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Abstract 

Autonomous Systems -An Architectural Characterization 
Joseph Sifakis 

Univ. Grenoble Alpes, Verimag laboratory 

The concept of autonomy is key to the loT vision promising increasing integration of smart services 
and systems minimizing human intervention. This vision challenges our capability to build complex 
open trustworthy autonomous systems. We lack a rigorous common semantic framework for 
autonomous systems. lt is remarkable that the debate about autonomous vehicles focuses almost 
exclusively on Al and learning techniques while it ignores many other equally important autonomous 
system design issues. 

Autonomous systems involve agents and abjects coordinated in some common environment so that 
their collective behavior meets a set of global goals. We propose a general computational model 
combining a system architecture model and an agent model. The architecture model allows 
expression of dynamic reconfigurable multi-mode coordination between components. The agent 
model consists of five interacting modules implementing each one a characteristic function: 
Perception, Reflection, Goal management, Planning and Self-adaptation. lt determines a concept of 
autonomie complexity accounting for the specific difficulty to build autonomous systems. 

We emphasize that the main characteristic of autonomous systems is their ability to handle 
knowledge and adaptively respond to environ ment changes. We advocate that autonomy should be 
associated with functionality and not with specific techniques. Machine learning is essential for 
autonomy although it can meet only a small portion of the needs implied by autonomous system 
design. 
We conclude that autonomy is a kind of broad intelligence. Building trustworthy and optimal 
autonomous systems goes far beyond the Al challenge. 

1. The concept of autonomy 

The concept of autonomy is key to the loT vision promising increasing integration of smart services 

and systems to achieve global goals such as optimal resource management and enhanced quality of 

life, with minimal human intervention. 

This vision challenges our capability to build complex open trustworthy autonomous systems. ln 

particular, we need an as muchas possible, rigorous definition of autonomy. ls there a general 

reference model that could provide a basis for evaluating system autonomy? What are the technical 

solutions for enhancing a system's autonomy? For each enhancement, is it possible to estimate the 

implied technical difficulties and risks? These are very important questions for autonomous systems 

engineering. 

Currently, the profusion of concepts and terms related to autonomy reflects the lack of a common 

semantic framework. lt is remarkable that the technical discussion about autonomous vehicles 
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focuses almost exclusively on Al and learning techniques while it ignores many other equally 

important autonomous system design issues. 

What is the difference between a thermostat, an automatic train shuttle, a chess-playing robot, a 

soccer-playing robot and a robocar? 

Ali bring solutions to the following general problem. 

• A system consists of agents and abjects sharing some common environment. lt pursues a set 

of global goals to provide various services. 

• Objects are physical dynamic systems without computation capability. Agents can partially 

observe and change their state. Objects can also undergo internai state changes. 

• Agents have the ability to monitor the abjects and act on their state, either al one or in some 

coordinated manner. 

• The number of abjects and agents can change dynamically depending on specific conditions. 

The problem is to determine the behavior of the system agents pursuing each one its own specific 

goals so that the collective behavior of the system including agents and abjects meets given 

global goals. 

We propose a technical definition of autonomy based on a general computational model consisting 

of an agent architecture model and a system architecture model: 

• The agent architecture model involves five modules, each one dealing with one fundamental 

aspect of autonomy: Perception, Refection, Goal management, Planning and Self-adaptation. 

lt specifies the coordination between these features in order to achieve autonomous 

behavior. lt also implicitly defines some abstract partial order relation for comparing the 

autonomy level of agents pursuing identical goals. 

• The system architecture model specifies coordination between system agents and their 

effect on the abjects. We need such a model to explicate how an agent perceives its 

environment and elaborates its contrai strategy. 

We progressively introduce the concept of autonomy through a comparison between five automated 

systems: a thermostat, an automatic train shuttle, a chess-playing robot, a soccer-playing robot and a 

robocar 

1.1 Agent Environment 

Ali the above systems automatically perform some mission characterized by their respective goals. 

They integrate agents continuously interacting with their environment through sensors and 
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actuators. The sensors provide stimuli to the agent; the actuators receive commands from the agent 

and change accordingly the state of its environ ment. 

Ali agents receive inputs and produce outputs so that their 1/0 relation meets their specific goals. 

They are real-time controllers monitoring state changes of the controlled environment and producing 

adequate responses. Nonetheless, there are significant differences regarding the complexity and 

intricacy of their environments and their goals with associated decision process. 

The environment of a thermostat is simply a room and a heating device. Stimuli are the temperature 

ofthe room and the state ofthe heater. 

For the automatic shuttle, the environment includes the cars composing the shuttle with their 

equipment and passengers. Stimuli take the form of numeric information about the position and 

speed of the cars and the state ofvarious equipment and peripherals. 

For the chess robot, the environment is a chessboard with pawns and the adversary robot. Stimuli 

are the configuration of the pawns on the chessboard extracted from static images provided by the 

robot camera. 

For the soccer robot, the environment consists of all other players, the ball, the goalposts and lines 

delimiting regions of the field. Stimuli are extracted in real time from dynamic images; they include 

the position and speed of players and ball. 

Finally for the robocar, the environment is more involved as it includes vehicles and obstacles in its 

vicinity as well as traffic control and communication equipment. The perceived environment state is 

the configuration of other robocars and obstacles with their dynamic attributes and the state of 

traffic contrai and communication equipment. The environment state is built from data provided by 

different types of sensors adequately treated and interpreted. 

1.2 Agent goals and plan generation 

As explained, agents behave as controllers acting on their environment to achieve their specific 

goals. The agent environment can be modeled as astate machine with two types of actions: 

controllable actions triggered by the agent; and uncontrollable actions that are internai state 

changes of the environment. Without getting into technical details, given a set of goals and an agent 

environment model, there are methods (semi-algorithms) for the computation of plans. Figure 1 

illustrates their principle for given environment and goals. ln the considered example, the goals 

require that the generated plans avoid the state Bad and eventually reach the state Target. The plan 

generation method consists in finding a subgraph of the environment state graph that is closed with 

respect to uncontrollable actions {in red) and does not conta in state Bad: furthermore, by adequately 

triggering controllable actions {in green) the state Target can be reached. 

ln general, environment models are infinite and the generated plans for given goals are infinite trees 

with alternating controllable and uncontrollable actions. When the environment model is finite, 

algorithms are used to compute a maximal controller including all the plans meeting the goals [1]. 
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For infinite or complex environments, it is not possible to generate an explicît a controller. The 

existence of plans cannot be theoretically guaranteed. lt depends on the type of goals and the 

controllablllty/observablllty relatlons. 

ln practlce, for glven goals, flnlte-horlzon plans are computed on llne from the agent's envlronment 

model. To cope with complexity, heuristics are used as well as precomputed plan skeletons. 

Furthermore, adequately choosing at design time the controllability/observability relation can 

significantly simplify on line plan generation. For instance, for simple safety goals e.g. avoiding 

harmful states, a finite horizon exploration from the current state may suffice. 

- N ever reach ~ 
- Eventually reach ........... L"""::l...,... 

E N VIRONMENT MODEL 

Figure 1: Plan generation from Goals and the Environment model 

Going back to the considered examples, the thermostat has an explicit controller that is a simple 

two-mode automaton switching between On and Off modes when temperature reaches minimal and 

maximal values, respectively. 

The shuttle has a more involved decision process. Usually an explicit controller ensures safety 

propertles, whlle commands computed on Une ensure adaptation to load variation and comfort 

optlmlzatlon. 

For the chess robot, there is no explicitly precomputed controller. Depending on the current 

configuration of the chessboard, the robotic agent chooses between a set of strategies optimizing 

criteria implied by the ru les of the game. Each strategy corresponds to a sub-goal from a 

hierarchically structured set of goals. To accelerate plan generation, precomputed knowledge is 

often used e.g. patterns of plans and associated methods. 

Similarly, for the soccer robot, plans are computed on line from the agent's environment model and 

its current configuration. Here a significant difference is the dynamic nature of the game as the 

controller is subject to hard real-time constraints. The game involves interaction between 

dynamically changing sets of agents (players). Although the game rules are well-clefined, their 

dynamlclty makes the outcome less predlctable. The declslon process generates plans from a 

dynamically changing environment model. lt should adequately combine defense and attack 

strategies to win a game within 90 minutes. Knowledge is instrumental for plan generation; it 

consists in using precomputed patterns and learning techniques for parameter estimation. 

For the robocar, the controller is even much more complex. ln contrast to the previous examples, the 
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environment involves a dynamically and unpredictably changing number of agents and abjects in 

particular due to agent mobility. Wh ile for chess or soccer agents the gaming rules are static and 

well-understood, traffic rules are dynamic and hard to formalize [2]. Rigorous definition of a coherent 

set of individual goals for an ensemble of robocars is a non-trivial problem. lndividual goals of 

robocars may be conflicting and a global consensus should be achieved in real-time taking into 

account multiple safety and optimality requirements. 

1.3 Main aspects of autonomy 

The discussed examples illustrate important differences when moving from simple automation to full 

autonomy. They also show technical obstacles to overcome in autonomous systems design. 

Autonomy is the capacity of an agent to achieve a set of coordinated goals by its own means 

(without human intervention) adapting to environ ment variations. lt combines five complementary 

aspects: 

• Perception e.g. interpretation of stimuli, removing ambiguity/vagueness from 

complex input data and determining relevant information; 

• Reflection e.g. building/updating a faithful environment run-time model; 

• Goal management e.g. choosing among possible goals the most appropriate ones for 

a given configuration of the environment model; 

• Planning to achieve chosen goals; 

• Self-adaptation e.g. the ability to adjust behavior through learning and reasoning and 

to change dynamically the goal management and planning processes. 

Note that the five aspects are orthogonal. The first two aspects deal with "understanding'' the 

situation of the environ ment. The third and the forth aspect deal with autonomy of decision. Self

adaptation ensures adequacy of decisions with respect to the environment situation. 

The above characterization, which we refine later, gives a clear insight about the very nature of the 

concept of autonomy. An autonomous agent uses at least one of the five functions. The thermostat is 

an automated agent that is not autonomous because its decision process is implemented by an 

explicit controller for a fixed set of goals. Furthermore, it has a fully observable/controllable 

environment providing stimuli that need no interpretation. 

Automated agents are often integrated in complex processes where autonomy is ensured by human 

operators. For instance, PLCs ensure production automation while qualified staff performs 

supervision and overall coordination. 

The level of autonomy of a system characterizes the relation between machine-empowered vs. 

human-assisted autonomy. Figure 2 illustrates this relation in a five-dimensional space. lmproving 

autonomy for some aspect consists in replacing human intervention by autonomous steering. Full 

autonomy means that the function for each aspect is machine empowered. 
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Figure 2: Human assisted vs. Machine empowered autonomy. 

An illustration of this concept is provided by the five autonomy levels for cars defined by the SAE 

shown in Table 1. Level 5 corresponds to full autonomy while lower levels require increasing 

assistance of the driver. 

L evelO 

Lev el 1 

Lev e l 2 

Lev el3 

Lev el4 

Lev el5 

1 SAE AYTONOMY LEVELS 

No automation 

Driver assistance required ( "hands on") 

The driver still needs ta maintain full situational awareness and contrai of the vehicle e.g. 
cruise contrai. 

Partial automation options available("hands off') 

Autopilot manages bath speedand steering under certain conditions, e.g. highway driving. 

Conditional Automation("eyes off') 

The car, rather than the driver, takes over actively monitoring the environment when the 
system is engaged. However, hum an drivers must be prepared ta respond ta a "request ta 
intervene" . 

High automation ( "mind off') 

Self driv ing is supported only in limited areas (geofenced) or under special circumstances, 
like trafficjams. 

Full automation ("steering wheel optional") 

No human intervention is required e.g. a robotic taxi. 

Table 1: SAE autonomy levels (https:Uen.wikioedia.org/wikj/Self-driving car) 

2. A computational model for autonomous systems 

2.1 A system architecture model 

ln order explain how an autonomous agent behaves, we need an adequate holistic model of its 

environment including other agents and objects. The model should in particular, propose concepts 

and principles accounting for the complex structure of the agent's environment and intricate 

coordination mechanisms. 
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We succinctly present an expressive architecture model developed with autonomy in mind. The 

model is inspired from the BIP coordination language. lt has been studied and implemented in two 

formalisms, one declarative and another imperative [3,4,5]. 

As already explained, an autonomous system involves two kinds of components: agents and abjects. 

The agents have computational capabilities. They can change the states of the abjects and 

coordinate to enforce global system goals. 

Components are instances of predefined types of agents and abjects: 

• An agent type is a computing system characterizing a mission or a service, e.g. Player, 

Arbiter, Sender, etc. lts semantics is a transition relation labeled with events and associated 

functions. Functions are triggered by the events that are atomic state changes involving 

other components, abjects or agents. 

• An abject type is a dynamic system e.g. electromechanical system, whose state can change 

through interaction with other components. Note that some abjects may be passive such as. 

a pawn or a static obstacle. 

We consider that a system model is a collection of architecture motifs, simply called motifs. 

A motif is a "world" where live dynamically changing sets of agents and abjects. lt is equipped with 

a map represented by a graph specified by sets of nodes and edges. Nodes represent abstract 

coordinates in some reference space. The connectivity relation between the nodes of a map may 

admit a physical or a logical interpretation. For a lift or a shuttle, the map is a simple linear structure: 

the nodes are floors or stations, respectively. ln the chess game, the map is an array representing the 

chessboard. 

The position of an agent a or of an abject ais given by a partial address function @: @(a) and @(a) is 

the node of the map where a and a are located, respectively. 

For example, an address function can define the distribution of pawns over the chessboard. The 

function changes when pawns move; it is undefined for pawns not placed on the board. For the 

soccer game, the map is a three-dimensional array representing the field with some granularity grain. 

The only mobile abject is the ball while all the agents are mobile. 

Finally, for robocars we need several maps to model the system. Figure 3 depicts a model consisting 

of two motifs with their corresponding maps. A Road Chunk Map accounts for the spatial 

configuration of robocars and of relevant abjects, typically obstacles. Other logical maps are 

necessary to specify coordination structure between robocars; for instance, to form platoons or to 

describe connectivity of communication infrastructure used by cars. 

The dynamics of the system described by a motif is a transition relation between configurations. A 

configuration is the set of the states of its components as well as their corresponding addresses on 

the map. Configurations change when events occur as the result of agent coordination: by execution 

of interactions rules or of configuration rules. 
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Figure 3: Modeling principle for robocars with two motifs 

, 

Interaction rules: An interaction is an atomic state change of a non-empty set of synchronizing 

agents that may also affect the state of objects. When the set is a singleton, the interaction is simply 

an action. We use ru les ln the form of guarded commands to descrlbe lnteractlons: the guard 

lnvolves state variables of the synchronlzlng components and the command ls a sequence of 

operations on their states. The ru les are parametric which requires iteration over types of 

components. For example the rule 

for al/ a:vehic/e, a':vehide if [distanœ(@(a},@(a')}<I} then exchange(a.speed, a'.speed). 

says that when two vehicles are close enough they exchange their speeds. 

The model provides primitives encompassing strong or weak synchronization and interactions of 

arbitrary arity. 

Confl1uratlon niles: Configuration ru les allow the expression of three lndependent types of 

dynamism: component dynamism, component mobility, and map dynamism. They are guarded 

commands consisting of guards (conditions on state variables of components) and sequences of 

specific reconfiguration operations. 

Typical operations are create/delete for components and add/remove for elements of maps. For 

instance, the operation create(a:messenger,@(a)=n) creates an agent named a of type messenger at 

address n. The operation delete(o:pawn) removes the pawn named o. 

Agent mobility is modeled by ru les modifying the address function of components. For example, the 

execution of the rule 

for al/ a:mobile if ({P(a}=n and @"1(n+l)=empty then ({P(a}:=n+l 

consists in moving forward agents of type mobile by one space of the map. 
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The proposed model is minimal and expressive. Each motif is a dynamic reconfigurable architecture, 

an ensemble of agents and objects governed by specific coordination rules. 

Note that an agent may belong to more than one motif. Furthermore, components can migrate from 

one motif to another using reconfiguration commands. 

For instance, the model of a soccer game involves at least two motifs. 

The Attack motif ensures coordination rules that aim at getting inside the adversary's defense and 

finally score a goal. The Defense motif ensures coordination rules that aim at slowing down an 

offense ta disrupt the pace and/or numerical advantage of an attack and finally get possession of the 

ball. Players can dynamically migrate from one motif ta the other. 

The model for an automated highway involves several motifs. Ali vehicles belonging to a Road Chunk 

motif are subject to general traffic coordination rules. A Platoon motif groups and coordinates an 

ensemble of vehicles cruising at the sa me speed and closely following a leader vehicle. An Overtake 

motif involves an overtaking vehicle and vehicles moving in the sa me direction in its vicinity. Finally, a 

Communication motif groups vehicles sharing a common communication infrastructure. 

2.2 A computational model for agents 

We present the agent computational model that puts emphasis on architectural aspects following 

the same line as (7]. lt consists of four main modules and a Repository as depicted in Figure 4. 

now ledge 
Repository 
• Agent types 
• Object Types 
• Map Patterns 

Declarative 
k nowledge 

• Methods 
Goals 

Knowledge 
generation 

Self-adaptation 

Knowledge 
app 1cat1on 

Perception 
sensory information 

Reflexion 

-
Road Chunk Map 

Road Chunk Map 

Cl! 

Cl! -·- ---- - - -
C!! Cl! Cl! 

Decision Environment Madel 

Goal management 

Planning 

commands 

Figure 4: The general architecture of the computational model for agents 

2.2.1 The Knowledge Repository 

The Knowledge Repository contains different kinds of knowledge used by the other modules for 1) 

the interpretation of sensory information; 2) building the environment model of the agent; 3) goal 

management and subsequent goal planning. 
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Sorne of the Repository knowledge is developed at design time and some is produced and stored at 

run time. 

Design time knowledge specifies basic components of the agent's environment, their main 

observability/controllability features as well as key properties and methods related to system goals. 

lt includes in particular: 

• A list of all the relevant types of agents and objects and their corresponding behavioral 

specification with the admitted coordination patterns e.g. interaction types and 

reconfiguration commands; 

• A list of predefined maps and coordination patterns used to build the agent's environment 

model; 

• A list of the goals pursued by the agent as sets of properties of two types: 1) critical 

properties requiring that some condition is never violated; 2) best-effort properties dealing 

with resource optimization e.g. finding tradeoffs between performance and resource 

utilization. 

• A list of methods used to enrich the knowledge about the environment model and so to 

produce additional knowledge at run time e.g. monitoring and learning techniques. 

Run time knowledge is generated on line from monitors, learning and analysis techniques. lt includes 

in particular: 

• Properties of the agent model that may be generated by application of analysis techniques or 

inferred by application of reasoning techniques; 

• Knowledge produced by monitors of the agent's behavior e.g. detecting failures or intrusion; 

• Knowledge produced by application of learning techniques, in particular to remove ambiguity 

about the environment configuration or to estimate parameters characterizing the dynamic 

behavior of the environ ment e.g. worst-case and average execution times. 

This presentation leaves open important questions about the nature of knowledge and the different 

forms it can take [2]. We discuss below some issues relevant for agent design. 

We consider that knowledge is "truthful" information that is used in some specific context to 

understand/predict a situation or to selve a problem. Truthfulness cannot always be asserted in a 

rigorous manner. Mathematical knowledge has definitely the highest degree of truthfulness, e.g. 

knowledge extracted from programs using analysis tools. At the other extreme, empirical knowledge 

although not theoretically substantiated, proves to be very useful in practice. The most widely used 

knowledge is empirical e.g. common sense knowledge, but also knowledge from machine learning. 

Knowledge may be declarative or procedural, regarding the form it can take. Declarative knowledge 

is a relation (property) involving entities of a demain. ln the Repository, can be stored: 1) logic 

formulas inferred from a set of axioms; 2) valid system properties extracted from a system model e.g. 

system invariants; 3) architecture patterns enforcing given properties. 

Procedural knowledge takes the form of an executable description such as algorithms, behavioral 

description of components and various analysis techniques. 

The Knowledge Repository contains all these types knowledge. Utilizing them effectively is essential 

for ensuring agent's self-adaptation and autonomy. 
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2.2.2 The Percepüon module 

The Perception module extracts relevant information from the various stimuli provided by sensors. 

For this purpose, it makes use of learning techniques or of analysis and recognition processes. The 

extracted information is linked to knowledge of the Repository. lt concerns 

• the type and possibly the identity of each sensed agent or object; 

• the state of the so identified components; 

• the type of the external environ ment characterized as a set of motifs with maps and 

associated coordination features. 

For instance, the Perception module of a soccer agent provides, for each identified component of the 

environment, its position and speed in the field map. The Perception module of a robocar provides 

the types of the components in the vicinity with their associated attributes. Sorne attributes connect 

the components to motifs and their corresponding maps. 

2.2.3 The Rejlecüon module 

The Reflection module uses information provided by the Perception module in order to build/update 

a model of the agent's environ ment. For some agents, the environment model - number of 

components, map, coordination rules - does not change over lifetime e.g. chessboard robot, soccer 

robot. Thus, sensory information determines mainly the state of components e.g. their position in 

the maps and interactions. 

Agents with dynamically changing environment e.g. robocars, are initially equipped with some 

environment model that is dynamically updated e.g. by creating/deleting motifs. For this to be 

feasible, the stimuli should provide information about architectural changes of the environment. 

Furthermore, the detected changes should correspond to patterns stored in the Knowledge 

Repository. 

Reflection module extensively uses design-time knowledge of the Repositoryto build a complete 

behavioral model of its perceived environment. Nonetheless, to preserve faithfulness and freshness 

of the model, stimuli interpretation should be precise enough and performed within acceptable 

delay. 

Performance of this module is critical for mobile agents subject to real-time constraints. How fast the 

agent's environment model can track changes of the real environment? Additionally, for distributed 

multi-agents systems, there is an inherent uncertainty about the global system states and th us a risk 

of discrepancy between environment models of different agents [7]. 

Note that each agent builds a partial model of the system environment reflecting its knowledge 

about its "neighborhood" that can be observed. ln a distributed system, there is no global model of 

the system environment. 

2.2.4 The Decision module 

The Decision module is decomposed into two cooperating submodules: a Goal Manager handling the 

actual agent's goals and a Planner generating plans that implement particular goals. 
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The module manages a set of goals bath critical and best effort. lt assigns higher priority to critical 

goals according to their importance. 

Often goal management boils down to solving an optimization problem. lt consists in translating 

goals into utility function policies: a goal is characterized as the desired set offeasible states for 

which the objective function is optimized subject to a set of constraints [9]. 

For a selected goal, the Planner computes from the environment modela corresponding plan. To 

cope with the exploding complexity of the planning process, various heuristics and precomputed 

patterns from the Knowledge Repository may be used. 

The generated plans involve commands for interaction with other agents or reconfiguration of their 

environment as explained in the system architecture model. The allowed coordination patterns with 

other components of the environment are specified in their definition stored in the Knowledge 

Repository. Note that interactions may involve exchange of knowledge between interacting agents 

e.g. changing methods or goals. 

2.2.5 The Self-adaption module 

The Self-adaptation module supervises and coordinates all the other modules. lt continuously 

reassesses the coherency of the exchanged information, creates new knowledge and provides 

directives to the Goal manager. 

The module applies existing knowledge or generates new knowledge by combining reasoning and 

run-time analysis techniques to detect significant changes in the environment that require 

responsive adaptation. For instance, it applies monitoring or analysis techniques to the environment 

model to detect critical situations; it also canuse learning techniques to estimate parameters or 

detect abnormal situations. 

The adaptation directives to the Goal Manager concern: 

1) Change of parameters affecting the choice of the managed goals, especially estimates of dynamic 

characteristics of the environment components; 

2) Change of the set of the managed goals (adding or removing a goal), in response to some 

exceptional event in the environment or to an explicit requirement through interaction with another 

agent. 

3. Autonomous system design complexity issues 

An interesting technical question is how to adequately choose the autonomy level for risk-benefit 

optimization in system design. Four main factors determine this choice. 

The first is the required degree of trustworthiness. For critical complex systems, semi-autonomy 

seems to be the realistic choice under the current state of the art e.g. ADAS cars. 

The other factors are three independent types of complexity discussed below: autonomie complexity, 

design complexity and implementation complexity. 
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3.1 Autonomie complex:ity 

We need a concept of complexity accounting for the specific difficulty to build autonomous systems. 

The following factors related to the fundamental aspects of autonomy, capture autonomie 

complexity. 

1. Complexitv of perception characterizes the difficulty to interpret stimuli provided by the 

environment and to timely generate corresponding inputs for the agent environment model. 

lt has various sources such as stimuli ambiguity (admitting different interpretations) or 

vagueness (fuzzy or noisy stimuli). Additionally, complexity is aggravated with the volume of 

stimuli data ta be analyzed in order to extract relevant input information. 

2. Lack of observability/controllability which implies partial knowledge of the agent's 

environment and consequently limitations for building a faithful run time model by the 

Reflection module. This affects the ability to build plans and act on the environment. 

3. Complexitv of goal management which is the complexity of the process of choosing amongst 

a set of goals a maximal subset of compatible goals characterizing a strategy for which a 

consistent plan is generated. The selection process may involve bath qualitative criteria such 

as priorities and quantitative criteria such as optimization of physical quantities. 

4. Complexity of planning which directly depends on the type of goals and the complexity of the 

agent's environment model. As explained goals may be as simple as non-violation of a 

constraint and more complicated such as reachability of a condition or achieving optimality 

over a given time period. 

S. Complexity of adaptation which is directly related to uncertainty about the agent's 

environment. Sources of uncertainty are multiple, including time-varying load, dynamic 

change due to mobility, bursty events, and most critical events such as failures and attacks. 

The Self-adaptation module generates objectives to cope with such situations involving 

imperfect knowledge and lack of predictability [2,5]. This can be achieved to some extent, 

using knowledge, e.g.[8]. 

Note that reduced observability is a source of uncertainty. Nonetheless, uncertainty is not 

completely resolved by simply enhancing observability [2]. 

Note that for agents not directly interacting with a physical environ ment, autonomy simply means to 

cope with the complexity of goals and some uncertainty e.g. an encoder adapting to varying load to 

avoid frame skipping. For a chess robot, only complexity of goals and planning are relevant; its 

environment is fully observable/controllable without uncertainty and the stimuli are non-ambiguous. 

For robocars, all types of complexity are relevant. 

3.2 Design complex:ity and its relationship to autonomy 

System design complexity characterizes the difficulty to build a system out of components

autonomous or net. lt is conceptualized in a two-dimensional space [2]. 

One dimension represents reactive complexity [10] of the agents constituting a system. 

The other dimension represents the complexity of the architectures used to coordinate the agents. 

Although design complexity is independent from autonomie complexity, it is interesting to 

understand how the demand for autonomy affects system design choices. 
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3.2.1 Reactive complexity 

Reactive complexity characterizes the intricacy of the interaction between an agent and its 

environment. lt is independent from space complexity or time complexity measuring the quantity of 

computational resources needed by an agent. 

We discuss below a classification of agents accordins to their reactive complexity (Fisure 5). 

• The simplest asents are transformational agents where the relation of the input to the 

output is sufficient to characterize their behavior. Computation is performed in batch mode 

without reference to any operating environment. Such agents are often software systems 

oblivious to real-time constraints, with simple well-defined environments. Adaptation 

consists in using precomputed knowledge to cope with inherent complexity of decision 

problems, e.g. intelligent resource orchestration in data centers, intelligent persona! 

assistant, game playing agent. 

• Streaming agents compute functions on streams of data. For a given input stream of values, 

they compute a corresponding output stream. The output value at some time t depends on 

the history of input values received by t. The goals for streamers deal with functional 

correctness and specific time-dependent properties such as latency. Data-flow systems are 

usually composed of streamers. Adaptation is essential to cope with load unpredictability 

and meet latency constraints, see for example [11] 
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Figure 5: Classification of asents according to their behavioral complexity 

• Embedded agents continuously interact with a physical environment to ensure global 

properties. They are mixed HW/SW systems where real-time behavior and dynamic 

properties are essential for correctness. Autonomous behavior is required when their 

mission involves high-level goals and complex environments, in particular to adaptively 

manage computational resources and meet critical soals. Embedded agents are integrated in 

industrial systems, transport systems and all kinds of devices. 

Note that the model of embedded agents should account for the behavior of their internai 

environment including computational resources (see discussion below). 

• A cyber physical asent is an embedded agent intesrating in its internai environment objects 

that are exclusively under its control. lts behavior involves both discrete and continuous 

variables representing the state of the integrated abjects. 

The environment model of such an agent should be refined to distinguish between internai 

and external environment as shown in Figure 6. The Perception module gets sensory 
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information from both the external and the internai environment model. The Reflection 

module builds/updates the two models corresponding to the two environments. The 

decision process is applied to the product of the environ ment models to generate plans with 

commands acting on both environments. 

Cyber physical systems seek a tight integration between computers and their physical 

environment. They are essential for building complex autonomous systems e.g. self-driving 

cars. 
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Figure 6: Computational model for cyber physical agent 

3.2.2 Architecture complexity 

E xternal 
Actuators 

The proposed model in 2.1 provides a basis for classifying system architectures according to their 

degree of dynamism, from static to self-organizing architectures as shown in Figure 7. 

We enumerate some representative cases below for increasing complexity of coordination. 

a) Static architectures involve a given number of agents and abjects, with fixed coordinates e.g. a 

smart building with fixed microcontrollers and electromechanical equipment. 

b) Parametric architectures can have arbitrary initially known numbers of " pluggable" components 

for fixed coordination patterns e.g. token ring architecture, an array computer. 

c) Dynamic architectures are parametric architectures with dynamic creation/deletion of agents or 

objects, e.g. array architecture for the Game of Life, client-server architecture. 

d) Mobile architectures are dynamic architectures where also the coordinates of objects and agents 

can change dynamically, e.g. swarm robotic system. Additionally, they may involve dynamic change 

of maps when mobile agents explore a space and progressively build a model of their environ ment. 

e) Self-organizing architectures are mobile architectures with many dynamically changing motifs e.g. 

for robocars, soccer playing robots. Self-organization is the ability to adapt coordination rules to 

changing system dynamics. 
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Motifs Single motif Many motifs Dynamic 
motifs 

Interactions Static Parametric 
interactions interactions 

NO YES 

NO YES 

NO YES 

NO YES 

Many conflicting Dynamic 
goals goals 

Agent Softvvare Hardware/ Cyber 
Software physical 

Architecture Centralized Decentral ized Distributed 

Figure 7: Variation of system complexity with respect to architecture, goals and implementation 

We have shown that all these types of architectures can be formalized as operators taking as 

arguments arbitrary numbers of instances of agent and objects types [3,4,5]. We badly need theory 

for studying their properties in a compositional manner. Knowing the properties of the types of 

objects and agents involved, is it possible to infer global system properties? A more ambitious 

avenue is to develop theory for correctness by construction [6]: how to combine basic architecture 

patterns with well-established properties in order to build complex architectures that preserve the 

properties. These are largely open hard problems that urgently need exploration. 
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Figure 8: Design complexity 
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Figure 8 illustrates design complexity for different types of systems depending on the reactive 

complexity of their agents and their architectural complexity. Note the separation between services 

and systems. Services use streamers and transformational agents. loT systems with advanced 

autonomy features, require mobile or self-organizing architectures and integrate embedded or cyber 
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physical agents. Self-organization is important for such systems with many conflicting goals. 

Nonetheless, contrary to common opinion, self-organization is not an intrinsic property of 

autonomous systems. An ordinary distributed system involving agents with explicit controllers 

communicating by exchange of non-ambiguous messages is self-organizing if it has multiple 

coordination modes. Similar arguments are applicable for other "self'-prefixed properties commonly 

considered as characteristic properties of autonomous systems. 

3.3 lmplementation complexity 

lmplementation is the process that leads to the realization of the designed system model. The latter 

can admit different implementations depending on the available computational resources and their 

organization. ln rigorous approaches, the outcome of the implementation process is another model 

accounting for the physical distribution of agents and features of infrastructure implementing the 

model coordination mechanisms [12]. 

We discuss below main choices for the implementation architecture depending on how/where the 

decisions are made and how/where the information is shared between the coordinating agents. We 

distinguish three main types of implementation architecture. 

1. Centralized architecture where the agents are not geographically distributed. They coordinate 

through a shared memory that stores the data of a common Knowledge Repository as well as the 

data representing the state of a common environment model. ln other words, each agent directly 

modifies/reads a shared data structure representing the motifs with their maps and the associated 

addressing functions. Such an implementation presents the advantage of the overall coherency of 

decision and coordination. Nonetheless, access conflicts may affect performance. A typical example 

is a blackboard architecture equipped with a common knowledge base, iteratively updated by agents 

starting with a problem specification and ending with a solution. 

2. Decentralized architecture where agents are geographically distributed and there is no central 

storage. Every agent makes decisions based on local knowledge and the resulting system behavior is 

the aggregate response. Nonetheless, agents can coordinate through local memory depending on the 

topology of the environment maps. A typical example are stigmergic systems where mobile 

independent agents e.g. ants, robots, use their common environment to for coordination purposes 

[13] 

3. Distributed architecture where there are no shared data storages. Each agent handles its own data 

and makes decisions according toits own goals. Coordination between agents is exclusively through 

asynchronous message passing. A key issue for such systems is coherency of coordination between 

components to achieve global goals. These are an emerging property of the collective behavior of the 

agents. 

Distributed autonomous agent systems are today a vast and active research field because of multiple 

applications in various demains from blockchain protocols to complex autonomous transportation 

systems. 
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4. Trustworthy autonomous systems - From correctness at design time to 
autonomie correctness 

Systems Engineering cornes to a turning point moving from small-size centralized non-evolvable 

automated systems with predictable environments, to large distributed evolvable autonomous 

systems with non-predicable dynamically changing environments. 

ls it possible to build trustworthy autonomous systems? As autonomous systems are often critical, 

this is the object of a considerable and sometimes heated debate [15]. As explained in [2], the trend 

for autonomous systems renders obsolete current critical systems engineering techniques and 

standards, such as 15026262 and D0178B, that require conclusive trustworthiness evidence based on 

some rigorous design methodology. 

lt is remarkable that currently cars with autonomy features are self-certified by their manufacturers, 

contrary to most industrial products that are certified by independent authorities. Furthermore, 

some carmakers consider that successfully passing an extremely large number of test cases is a 

sufficient evidence of trustworthiness. 

Trustworthiness is a transversal design issue. lt is not limited to purely functional correctness. A 

system is deemed trustworthy if it behaves as expected despite design errors, hardware failures and 

any kind of harmful interaction with its human and physical environment, including misuse, attacks, 

disturbances and any kind of unpredictable events [6]. 

We briefly discuss how the rigorous model-based approach for guaranteeing trustworthiness can be 

in principle, extended to autonomous systems and the implied technical difficulties. 

Currently, model-based approaches for achieving trustworthiness involve two steps. 

The first step aims at providing guarantees that some abstract system model representing the 

system's nominal behavior satisfies critical system goals. The nominal behavior model usually 

assumes that system environment is fully reliable and to some extent predictable. The second step 

deals with possible violations of these assumptions for a given implementation. 

Building autonomous system models accounting for nominal behavior requires strong expertise on 

both modeling and algorithmic aspects. Algorithms describe how individual goals of agents 

contribute to achieving global system goals. Their design is a non-trivial problem because they are 

distributed or decentralized. Furthermore, they pursue jointly critical and optimization goals for 

dynamically changing environments. They allow the management of critical resources {space, time, 

memory, energy) by optimizing performance and additionally respecting smoothness conditions. 

Typical examples are collision avoidance algorithms for vehicles (cars, aircraft) that manage the 

available space respecting requirements on speed and avoiding collision with obstacles. Other 

examples are mixed criticality systems involving critical and non-critical features. 

Modeling deals with agent nominal behavior description and coordination. Agent nominal behavior 

assumes that both the sensors and the Perception function are flawless and that sensory information 
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ls correctly lnterpreted lnto predeflned concepts. lt focuses on Reflectlon and Declslon and ln 

particular on their dynamic aspects. 

Following our approach, the coordination is described as the composition of motifs each one 

corresponding to a system mode and solving a specific coordination problem. Model correctness can 

be inferred in principle, by proving that the motifs are correct with respect to their coordination 

goals and that they are composable [6]. 

Providing guarantees for complex autonomous systems faces several limitations [2]. One is the 

decomposition and formalization of high-level goals in tenns of concrete requirements verifiable on 

the system behavioral model. A second limitation concerns our ability to build faithful system 

models, especially when they involve cyber physical components. The third limitation is that 

machlne-learnlng techniques do not lend themselves to behavloral modellng and should be treated 

as ublack boxes". 

The second step aims at ensuring trustworthiness for a given implementation taking into account 

deviations from nominal behavior e.g. possible harmful events such as failures and security threats. lt 

starts from the characterization of trustworthy states for nominal behavior provided by the first step 

(Figure 9). lt involves a more or less exhaustive analysis to identify all kind of harmful events and 

their possible effect. Then, for each harmful event, specific techniques are used to ensure resilience 

e.g. typically, redundancy-based techniques. This practically means that the occurrence of a single 

harmful event does not (lmmedlately) compromise system trustworthlness. lt leads to some non

fatal state from which using DIR (Detection, Isolation, Recovery) mechanisms it is possible to bring 

the system back to a trustworthy state [14]. 

This approach has been successfully applied to small, centralized critical systems. lt is costly and 

leads to overprovisioned systems [6] as it consists in estimating independently, for each type of 

harmful event and associated DIR mechanism, worst-case situations and statically reserving the 

needed resources to cope with them. lts application to autonomous systems is even more difficult as 

the characterization of the effect of harmful events depends on complex environmental conditions. 

Such a characterization cannot be enumerative and exhaustive; it should be symbolic and 

conservatlve, the result of a global model-based analysls. 

Figure 9: Recovery from non-fatal states 
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Figure 10: Pre-Crash Scenarlo Typology coverlng 99.4 percent of all light-vehicle crashes for 

5,942,000 cases, DOT HS 810 767, April 2017 

This fact is illustrated by the pre-crash failure typology shown in Figure 10. For example, "Vehicle 

failure" needs further detailed and complex analysis to identify recovery policies, depending on the 

conditions under which this event occurs. 

For autonomous systems, a key idea is to replace the individual DIR mechanisms developed at design 

time, by adaptive mechanisms managing system resources globally to achieve, first of all critical goals 

and plan best-effort goals according to resource availability. Such an approach would avoid 

overprovisioning of traditional approaches and would close the existing gap between critical and 

best-effort systems engineering [6]. 

Moving from correctness at design time to autonomie correctness requires not only cutting-edge 

theory but also finding adequate tradeoffs between quality of contrai and performance. The 

adaptive DIR process involves complex decision methods that may affect the ability to react promptly 

for timely recovery. 

To conclude, the proposed computational model for autonomous systems can provide a basis for 

studying model-based autonomous system design. Nonetheless, we are far from ensuring that the 

conditions are in place to develop rigorous design flows. 
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5. Discussion 

The main characteristic of autonomous systems is their ability to handle knowledge about their 

situation and adaptively respond to environment changes. The identified aspects of autonomy have 

some similarity with types of awareness exhibited by human mind [7]. 

Closing the gap between artificial and human autonomy encounters several difficult to overcome 

barri ers. 

A first barrier is that human mind understands goals in terms of high-level concepts. lt is not trivial to 

link concepts to massive information collected by sensors or to commands of actuators. The 

Perception process should be robust and reliable for dynamically changing environment conditions. 

Similarly, there is a big distance between directives such as "deviate from the reference trajectory to 

avoid the obstacle" and their implementation in terms of concrete goals from which corresponding 

plans are effectively computed [2]. 

A second barrier is that situation understanding by humans is largely rooted in common sense 

reasoning. Our mind has built and continuously maintains since our birth, a complex semantic model 

of both our external and internai environments. lt is practically impossible to elicit all the knowledge 

encompassed by such a model. No need to understand Newton's laws to expect that apple fall out of 

trees, that parents are aider than their children are, etc. The important question is how close 

computers can get to a solution ofthis problem. 

As humans have innate knowledge, we can equip an agent at design time with built-in knowledge 

and a faithful model of its initial environment. Then the agent's Reflection function should: 1) have 

access to a huge Knowledge Repository involving ail common concepts and their relations; and 2) be 

able to consistently update the environment model by matching the perceived information to 

predefined knowledge patterns. 

A third barrier for computers is matching human self-adaptation and the capacity: to supervise the 

state of acquired knowledge; to understand never encountered situations; and ta create new goals. 

Goal creation and handling is a grand challenge of autonomy. How to assign individual goals to 

agents so that they all together concur to the achievement of given global system goals? 

The paper provides a technical characterization of autonomy as the combination of five basic and 

independent features. lt clearly separates aspects that are essential for autonomie behavior from 

other general systems engineering aspects. ln that respect, it differs from other approaches using a 

large number of poorly understood "self'-prefixed terms: Self-configuration, Self-healing, Self

optimization, Self-protection, Self-regulation, Self-learning, Self-awareness, Self-organization, Self

creation, Self-management, Self-description [16,17]. Such characterizations based on technically non

substantiated terms obscure the debate about the very nature of autonomy. 
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A main conclusion is that autonomy should be associated with functionality and not with specific 

techniques. Machine learning is essential for removing ambiguity from complex stimuli and coping 

with uncertainty of unpredictable environments. Nonetheless, it can be used to meet only a small 

portion of the needs implied by autonomous system design. Furthermore, it is net the only way to 

build perceptors and controllers. 

Autonomy is a kind of broad intelligence. The current Al vision is too much influenced by Turing's test 

that considers intelligence as a verbal game between a human and a computer. Nonetheless, animais 

are not verbal and exhibit intelligence. A big deal of human intelligence is not verbal. 

Intelligence is not just automation of decisions even if this requires the computation of strategies 

with exploding complexity. Our characterization as the combination of five different types of abilities 

shows a big difference between an autonomous vehicle and a game playing robot. The situation 

awareness required for the robot is minimal. The stimuli and the environment models are trivial to 

interpret and build. The rules of the game are well-understood and can be directly related to goals. 

Computers would exhibit intelligence when they can handle knowledge (create and use knowledge) 

so as to cope with the ever changing reality as humans do. Building trustworthy and optimal 

autonomous systems goes for far beyond the current Al challenge. 
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