
1

Retrieved from https://arxiv.org/ftp/arxiv/papers/1811/1811.10277.pdf

Abstract

Autonomous Systems -An Architectural Characterization
Joseph Sifakis

Univ. Grenoble Alpes, Verimag laboratory

The concept of autonomy is key to the loT vision promising increasing integration of smart services
and systems minimizing human intervention. This vision challenges our capability to build complex
open trustworthy autonomous systems. We lack a rigorous common semantic framework for
autonomous systems. lt is remarkable that the debate about autonomous vehicles focuses almost
exclusively on Al and learning techniques while it ignores many other equally important autonomous
system design issues.

Autonomous systems involve agents and abjects coordinated in some common environment so that
their collective behavior meets a set of global goals. We propose a general computational model
combining a system architecture model and an agent model. The architecture model allows
expression of dynamic reconfigurable multi-mode coordination between components. The agent
model consists of five interacting modules implementing each one a characteristic function:
Perception, Reflection, Goal management, Planning and Self-adaptation. lt determines a concept of
autonomie complexity accounting for the specific difficulty to build autonomous systems.

We emphasize that the main characteristic of autonomous systems is their ability to handle
knowledge and adaptively respond to environ ment changes. We advocate that autonomy should be
associated with functionality and not with specific techniques. Machine learning is essential for
autonomy although it can meet only a small portion of the needs implied by autonomous system
design.
We conclude that autonomy is a kind of broad intelligence. Building trustworthy and optimal
autonomous systems goes far beyond the Al challenge.

1. The concept of autonomy

The concept of autonomy is key to the loT vision promising increasing integration of smart services

and systems to achieve global goals such as optimal resource management and enhanced quality of

life, with minimal human intervention.

This vision challenges our capability to build complex open trustworthy autonomous systems. ln

particular, we need an as muchas possible, rigorous definition of autonomy. ls there a general

reference model that could provide a basis for evaluating system autonomy? What are the technical

solutions for enhancing a system's autonomy? For each enhancement, is it possible to estimate the

implied technical difficulties and risks? These are very important questions for autonomous systems

engineering.

Currently, the profusion of concepts and terms related to autonomy reflects the lack of a common

semantic framework. lt is remarkable that the technical discussion about autonomous vehicles

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

2

focuses almost exclusively on Al and learning techniques while it ignores many other equally

important autonomous system design issues.

What is the difference between a thermostat, an automatic train shuttle, a chess-playing robot, a

soccer-playing robot and a robocar?

Ali bring solutions to the following general problem.

• A system consists of agents and abjects sharing some common environment. lt pursues a set

of global goals to provide various services.

• Objects are physical dynamic systems without computation capability. Agents can partially

observe and change their state. Objects can also undergo internai state changes.

• Agents have the ability to monitor the abjects and act on their state, either al one or in some

coordinated manner.

• The number of abjects and agents can change dynamically depending on specific conditions.

The problem is to determine the behavior of the system agents pursuing each one its own specific

goals so that the collective behavior of the system including agents and abjects meets given

global goals.

We propose a technical definition of autonomy based on a general computational model consisting

of an agent architecture model and a system architecture model:

• The agent architecture model involves five modules, each one dealing with one fundamental

aspect of autonomy: Perception, Refection, Goal management, Planning and Self-adaptation.

lt specifies the coordination between these features in order to achieve autonomous

behavior. lt also implicitly defines some abstract partial order relation for comparing the

autonomy level of agents pursuing identical goals.

• The system architecture model specifies coordination between system agents and their

effect on the abjects. We need such a model to explicate how an agent perceives its

environment and elaborates its contrai strategy.

We progressively introduce the concept of autonomy through a comparison between five automated

systems: a thermostat, an automatic train shuttle, a chess-playing robot, a soccer-playing robot and a

robocar

1.1 Agent Environment

Ali the above systems automatically perform some mission characterized by their respective goals.

They integrate agents continuously interacting with their environment through sensors and

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

3

actuators. The sensors provide stimuli to the agent; the actuators receive commands from the agent

and change accordingly the state of its environ ment.

Ali agents receive inputs and produce outputs so that their 1/0 relation meets their specific goals.

They are real-time controllers monitoring state changes of the controlled environment and producing

adequate responses. Nonetheless, there are significant differences regarding the complexity and

intricacy of their environments and their goals with associated decision process.

The environment of a thermostat is simply a room and a heating device. Stimuli are the temperature

ofthe room and the state ofthe heater.

For the automatic shuttle, the environment includes the cars composing the shuttle with their

equipment and passengers. Stimuli take the form of numeric information about the position and

speed of the cars and the state ofvarious equipment and peripherals.

For the chess robot, the environment is a chessboard with pawns and the adversary robot. Stimuli

are the configuration of the pawns on the chessboard extracted from static images provided by the

robot camera.

For the soccer robot, the environment consists of all other players, the ball, the goalposts and lines

delimiting regions of the field. Stimuli are extracted in real time from dynamic images; they include

the position and speed of players and ball.

Finally for the robocar, the environment is more involved as it includes vehicles and obstacles in its

vicinity as well as traffic control and communication equipment. The perceived environment state is

the configuration of other robocars and obstacles with their dynamic attributes and the state of

traffic contrai and communication equipment. The environment state is built from data provided by

different types of sensors adequately treated and interpreted.

1.2 Agent goals and plan generation

As explained, agents behave as controllers acting on their environment to achieve their specific

goals. The agent environment can be modeled as astate machine with two types of actions:

controllable actions triggered by the agent; and uncontrollable actions that are internai state

changes of the environment. Without getting into technical details, given a set of goals and an agent

environment model, there are methods (semi-algorithms) for the computation of plans. Figure 1

illustrates their principle for given environment and goals. ln the considered example, the goals

require that the generated plans avoid the state Bad and eventually reach the state Target. The plan

generation method consists in finding a subgraph of the environment state graph that is closed with

respect to uncontrollable actions {in red) and does not conta in state Bad: furthermore, by adequately

triggering controllable actions {in green) the state Target can be reached.

ln general, environment models are infinite and the generated plans for given goals are infinite trees

with alternating controllable and uncontrollable actions. When the environment model is finite,

algorithms are used to compute a maximal controller including all the plans meeting the goals [1].

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

4

For infinite or complex environments, it is not possible to generate an explicît a controller. The

existence of plans cannot be theoretically guaranteed. lt depends on the type of goals and the

controllablllty/observablllty relatlons.

ln practlce, for glven goals, flnlte-horlzon plans are computed on llne from the agent's envlronment

model. To cope with complexity, heuristics are used as well as precomputed plan skeletons.

Furthermore, adequately choosing at design time the controllability/observability relation can

significantly simplify on line plan generation. For instance, for simple safety goals e.g. avoiding

harmful states, a finite horizon exploration from the current state may suffice.

- N ever reach ~
- Eventually reach L"""::l...,...

E N VIRONMENT MODEL

Figure 1: Plan generation from Goals and the Environment model

Going back to the considered examples, the thermostat has an explicit controller that is a simple

two-mode automaton switching between On and Off modes when temperature reaches minimal and

maximal values, respectively.

The shuttle has a more involved decision process. Usually an explicit controller ensures safety

propertles, whlle commands computed on Une ensure adaptation to load variation and comfort

optlmlzatlon.

For the chess robot, there is no explicitly precomputed controller. Depending on the current

configuration of the chessboard, the robotic agent chooses between a set of strategies optimizing

criteria implied by the ru les of the game. Each strategy corresponds to a sub-goal from a

hierarchically structured set of goals. To accelerate plan generation, precomputed knowledge is

often used e.g. patterns of plans and associated methods.

Similarly, for the soccer robot, plans are computed on line from the agent's environment model and

its current configuration. Here a significant difference is the dynamic nature of the game as the

controller is subject to hard real-time constraints. The game involves interaction between

dynamically changing sets of agents (players). Although the game rules are well-clefined, their

dynamlclty makes the outcome less predlctable. The declslon process generates plans from a

dynamically changing environment model. lt should adequately combine defense and attack

strategies to win a game within 90 minutes. Knowledge is instrumental for plan generation; it

consists in using precomputed patterns and learning techniques for parameter estimation.

For the robocar, the controller is even much more complex. ln contrast to the previous examples, the

Autonomous Systems- An Architectural Characterlzatlon, Joseph Slfakls, November 2018

5

environment involves a dynamically and unpredictably changing number of agents and abjects in

particular due to agent mobility. Wh ile for chess or soccer agents the gaming rules are static and

well-understood, traffic rules are dynamic and hard to formalize [2]. Rigorous definition of a coherent

set of individual goals for an ensemble of robocars is a non-trivial problem. lndividual goals of

robocars may be conflicting and a global consensus should be achieved in real-time taking into

account multiple safety and optimality requirements.

1.3 Main aspects of autonomy

The discussed examples illustrate important differences when moving from simple automation to full

autonomy. They also show technical obstacles to overcome in autonomous systems design.

Autonomy is the capacity of an agent to achieve a set of coordinated goals by its own means

(without human intervention) adapting to environ ment variations. lt combines five complementary

aspects:

• Perception e.g. interpretation of stimuli, removing ambiguity/vagueness from

complex input data and determining relevant information;

• Reflection e.g. building/updating a faithful environment run-time model;

• Goal management e.g. choosing among possible goals the most appropriate ones for

a given configuration of the environment model;

• Planning to achieve chosen goals;

• Self-adaptation e.g. the ability to adjust behavior through learning and reasoning and

to change dynamically the goal management and planning processes.

Note that the five aspects are orthogonal. The first two aspects deal with "understanding'' the

situation of the environ ment. The third and the forth aspect deal with autonomy of decision. Self

adaptation ensures adequacy of decisions with respect to the environment situation.

The above characterization, which we refine later, gives a clear insight about the very nature of the

concept of autonomy. An autonomous agent uses at least one of the five functions. The thermostat is

an automated agent that is not autonomous because its decision process is implemented by an

explicit controller for a fixed set of goals. Furthermore, it has a fully observable/controllable

environment providing stimuli that need no interpretation.

Automated agents are often integrated in complex processes where autonomy is ensured by human

operators. For instance, PLCs ensure production automation while qualified staff performs

supervision and overall coordination.

The level of autonomy of a system characterizes the relation between machine-empowered vs.

human-assisted autonomy. Figure 2 illustrates this relation in a five-dimensional space. lmproving

autonomy for some aspect consists in replacing human intervention by autonomous steering. Full

autonomy means that the function for each aspect is machine empowered.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

6

/
/

/
Goal M anagem e n t

Figure 2: Human assisted vs. Machine empowered autonomy.

An illustration of this concept is provided by the five autonomy levels for cars defined by the SAE

shown in Table 1. Level 5 corresponds to full autonomy while lower levels require increasing

assistance of the driver.

L evelO

Lev el 1

Lev e l 2

Lev el3

Lev el4

Lev el5

1 SAE AYTONOMY LEVELS

No automation

Driver assistance required ("hands on")

The driver still needs ta maintain full situational awareness and contrai of the vehicle e.g.
cruise contrai.

Partial automation options available("hands off')

Autopilot manages bath speedand steering under certain conditions, e.g. highway driving.

Conditional Automation("eyes off')

The car, rather than the driver, takes over actively monitoring the environment when the
system is engaged. However, hum an drivers must be prepared ta respond ta a "request ta
intervene" .

High automation ("mind off')

Self driv ing is supported only in limited areas (geofenced) or under special circumstances,
like trafficjams.

Full automation ("steering wheel optional")

No human intervention is required e.g. a robotic taxi.

Table 1: SAE autonomy levels (https:Uen.wikioedia.org/wikj/Self-driving car)

2. A computational model for autonomous systems

2.1 A system architecture model

ln order explain how an autonomous agent behaves, we need an adequate holistic model of its

environment including other agents and objects. The model should in particular, propose concepts

and principles accounting for the complex structure of the agent's environment and intricate

coordination mechanisms.

Autonomous Systems - An Architectural Characterization, Joseph Sifakis, November 2018

7

We succinctly present an expressive architecture model developed with autonomy in mind. The

model is inspired from the BIP coordination language. lt has been studied and implemented in two

formalisms, one declarative and another imperative [3,4,5].

As already explained, an autonomous system involves two kinds of components: agents and abjects.

The agents have computational capabilities. They can change the states of the abjects and

coordinate to enforce global system goals.

Components are instances of predefined types of agents and abjects:

• An agent type is a computing system characterizing a mission or a service, e.g. Player,

Arbiter, Sender, etc. lts semantics is a transition relation labeled with events and associated

functions. Functions are triggered by the events that are atomic state changes involving

other components, abjects or agents.

• An abject type is a dynamic system e.g. electromechanical system, whose state can change

through interaction with other components. Note that some abjects may be passive such as.

a pawn or a static obstacle.

We consider that a system model is a collection of architecture motifs, simply called motifs.

A motif is a "world" where live dynamically changing sets of agents and abjects. lt is equipped with

a map represented by a graph specified by sets of nodes and edges. Nodes represent abstract

coordinates in some reference space. The connectivity relation between the nodes of a map may

admit a physical or a logical interpretation. For a lift or a shuttle, the map is a simple linear structure:

the nodes are floors or stations, respectively. ln the chess game, the map is an array representing the

chessboard.

The position of an agent a or of an abject ais given by a partial address function @: @(a) and @(a) is

the node of the map where a and a are located, respectively.

For example, an address function can define the distribution of pawns over the chessboard. The

function changes when pawns move; it is undefined for pawns not placed on the board. For the

soccer game, the map is a three-dimensional array representing the field with some granularity grain.

The only mobile abject is the ball while all the agents are mobile.

Finally, for robocars we need several maps to model the system. Figure 3 depicts a model consisting

of two motifs with their corresponding maps. A Road Chunk Map accounts for the spatial

configuration of robocars and of relevant abjects, typically obstacles. Other logical maps are

necessary to specify coordination structure between robocars; for instance, to form platoons or to

describe connectivity of communication infrastructure used by cars.

The dynamics of the system described by a motif is a transition relation between configurations. A

configuration is the set of the states of its components as well as their corresponding addresses on

the map. Configurations change when events occur as the result of agent coordination: by execution

of interactions rules or of configuration rules.

Autonomous Systems-An Architectural Characterization, Joseph Sifakis, November 2018

8

-·-

@

- - · - .@ ·- ·- ·-·

.-.- · -· -

@

.-· - · .- ·-

@

Communication Map
·- ·- ·- - - - -· -·-·-·- - ·-·
·-·-·-·-·-·-·-·-·-·-·-··-· -·

·- ·-· - ·
@

@ @

/ ,.--:,e ,·' ,./
,.,

,,·' ,
,·'

Figure 3: Modeling principle for robocars with two motifs

,

Interaction rules: An interaction is an atomic state change of a non-empty set of synchronizing

agents that may also affect the state of objects. When the set is a singleton, the interaction is simply

an action. We use ru les ln the form of guarded commands to descrlbe lnteractlons: the guard

lnvolves state variables of the synchronlzlng components and the command ls a sequence of

operations on their states. The ru les are parametric which requires iteration over types of

components. For example the rule

for al/ a:vehic/e, a':vehide if [distanœ(@(a},@(a')}<I} then exchange(a.speed, a'.speed).

says that when two vehicles are close enough they exchange their speeds.

The model provides primitives encompassing strong or weak synchronization and interactions of

arbitrary arity.

Confl1uratlon niles: Configuration ru les allow the expression of three lndependent types of

dynamism: component dynamism, component mobility, and map dynamism. They are guarded

commands consisting of guards (conditions on state variables of components) and sequences of

specific reconfiguration operations.

Typical operations are create/delete for components and add/remove for elements of maps. For

instance, the operation create(a:messenger,@(a)=n) creates an agent named a of type messenger at

address n. The operation delete(o:pawn) removes the pawn named o.

Agent mobility is modeled by ru les modifying the address function of components. For example, the

execution of the rule

for al/ a:mobile if ({P(a}=n and @"1(n+l)=empty then ({P(a}:=n+l

consists in moving forward agents of type mobile by one space of the map.

Autonomous Systems- An Architectural Characterlzatlon, Joseph Slfakls, November 2018

9

The proposed model is minimal and expressive. Each motif is a dynamic reconfigurable architecture,

an ensemble of agents and objects governed by specific coordination rules.

Note that an agent may belong to more than one motif. Furthermore, components can migrate from

one motif to another using reconfiguration commands.

For instance, the model of a soccer game involves at least two motifs.

The Attack motif ensures coordination rules that aim at getting inside the adversary's defense and

finally score a goal. The Defense motif ensures coordination rules that aim at slowing down an

offense ta disrupt the pace and/or numerical advantage of an attack and finally get possession of the

ball. Players can dynamically migrate from one motif ta the other.

The model for an automated highway involves several motifs. Ali vehicles belonging to a Road Chunk

motif are subject to general traffic coordination rules. A Platoon motif groups and coordinates an

ensemble of vehicles cruising at the sa me speed and closely following a leader vehicle. An Overtake

motif involves an overtaking vehicle and vehicles moving in the sa me direction in its vicinity. Finally, a

Communication motif groups vehicles sharing a common communication infrastructure.

2.2 A computational model for agents

We present the agent computational model that puts emphasis on architectural aspects following

the same line as (7]. lt consists of four main modules and a Repository as depicted in Figure 4.

now ledge
Repository
• Agent types
• Object Types
• Map Patterns

Declarative
k nowledge

• Methods
Goals

Knowledge
generation

Self-adaptation

Knowledge
app 1cat1on

Perception
sensory information

Reflexion

-
Road Chunk Map

Road Chunk Map

Cl!

Cl! -·- ---- - - -
C!! Cl! Cl!

Decision Environment Madel

Goal management

Planning

commands

Figure 4: The general architecture of the computational model for agents

2.2.1 The Knowledge Repository

The Knowledge Repository contains different kinds of knowledge used by the other modules for 1)

the interpretation of sensory information; 2) building the environment model of the agent; 3) goal

management and subsequent goal planning.

Autonomous Systems - An Architectural Characterization, Joseph Sifakis, November 2018

10

Sorne of the Repository knowledge is developed at design time and some is produced and stored at

run time.

Design time knowledge specifies basic components of the agent's environment, their main

observability/controllability features as well as key properties and methods related to system goals.

lt includes in particular:

• A list of all the relevant types of agents and objects and their corresponding behavioral

specification with the admitted coordination patterns e.g. interaction types and

reconfiguration commands;

• A list of predefined maps and coordination patterns used to build the agent's environment

model;

• A list of the goals pursued by the agent as sets of properties of two types: 1) critical

properties requiring that some condition is never violated; 2) best-effort properties dealing

with resource optimization e.g. finding tradeoffs between performance and resource

utilization.

• A list of methods used to enrich the knowledge about the environment model and so to

produce additional knowledge at run time e.g. monitoring and learning techniques.

Run time knowledge is generated on line from monitors, learning and analysis techniques. lt includes

in particular:

• Properties of the agent model that may be generated by application of analysis techniques or

inferred by application of reasoning techniques;

• Knowledge produced by monitors of the agent's behavior e.g. detecting failures or intrusion;

• Knowledge produced by application of learning techniques, in particular to remove ambiguity

about the environment configuration or to estimate parameters characterizing the dynamic

behavior of the environ ment e.g. worst-case and average execution times.

This presentation leaves open important questions about the nature of knowledge and the different

forms it can take [2]. We discuss below some issues relevant for agent design.

We consider that knowledge is "truthful" information that is used in some specific context to

understand/predict a situation or to selve a problem. Truthfulness cannot always be asserted in a

rigorous manner. Mathematical knowledge has definitely the highest degree of truthfulness, e.g.

knowledge extracted from programs using analysis tools. At the other extreme, empirical knowledge

although not theoretically substantiated, proves to be very useful in practice. The most widely used

knowledge is empirical e.g. common sense knowledge, but also knowledge from machine learning.

Knowledge may be declarative or procedural, regarding the form it can take. Declarative knowledge

is a relation (property) involving entities of a demain. ln the Repository, can be stored: 1) logic

formulas inferred from a set of axioms; 2) valid system properties extracted from a system model e.g.

system invariants; 3) architecture patterns enforcing given properties.

Procedural knowledge takes the form of an executable description such as algorithms, behavioral

description of components and various analysis techniques.

The Knowledge Repository contains all these types knowledge. Utilizing them effectively is essential

for ensuring agent's self-adaptation and autonomy.

Autonomous Systems-An Architectural Characterization, Joseph Sifakis, November 2018

11

2.2.2 The Percepüon module

The Perception module extracts relevant information from the various stimuli provided by sensors.

For this purpose, it makes use of learning techniques or of analysis and recognition processes. The

extracted information is linked to knowledge of the Repository. lt concerns

• the type and possibly the identity of each sensed agent or object;

• the state of the so identified components;

• the type of the external environ ment characterized as a set of motifs with maps and

associated coordination features.

For instance, the Perception module of a soccer agent provides, for each identified component of the

environment, its position and speed in the field map. The Perception module of a robocar provides

the types of the components in the vicinity with their associated attributes. Sorne attributes connect

the components to motifs and their corresponding maps.

2.2.3 The Rejlecüon module

The Reflection module uses information provided by the Perception module in order to build/update

a model of the agent's environ ment. For some agents, the environment model - number of

components, map, coordination rules - does not change over lifetime e.g. chessboard robot, soccer

robot. Thus, sensory information determines mainly the state of components e.g. their position in

the maps and interactions.

Agents with dynamically changing environment e.g. robocars, are initially equipped with some

environment model that is dynamically updated e.g. by creating/deleting motifs. For this to be

feasible, the stimuli should provide information about architectural changes of the environment.

Furthermore, the detected changes should correspond to patterns stored in the Knowledge

Repository.

Reflection module extensively uses design-time knowledge of the Repositoryto build a complete

behavioral model of its perceived environment. Nonetheless, to preserve faithfulness and freshness

of the model, stimuli interpretation should be precise enough and performed within acceptable

delay.

Performance of this module is critical for mobile agents subject to real-time constraints. How fast the

agent's environment model can track changes of the real environment? Additionally, for distributed

multi-agents systems, there is an inherent uncertainty about the global system states and th us a risk

of discrepancy between environment models of different agents [7].

Note that each agent builds a partial model of the system environment reflecting its knowledge

about its "neighborhood" that can be observed. ln a distributed system, there is no global model of

the system environment.

2.2.4 The Decision module

The Decision module is decomposed into two cooperating submodules: a Goal Manager handling the

actual agent's goals and a Planner generating plans that implement particular goals.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

12

The module manages a set of goals bath critical and best effort. lt assigns higher priority to critical

goals according to their importance.

Often goal management boils down to solving an optimization problem. lt consists in translating

goals into utility function policies: a goal is characterized as the desired set offeasible states for

which the objective function is optimized subject to a set of constraints [9].

For a selected goal, the Planner computes from the environment modela corresponding plan. To

cope with the exploding complexity of the planning process, various heuristics and precomputed

patterns from the Knowledge Repository may be used.

The generated plans involve commands for interaction with other agents or reconfiguration of their

environment as explained in the system architecture model. The allowed coordination patterns with

other components of the environment are specified in their definition stored in the Knowledge

Repository. Note that interactions may involve exchange of knowledge between interacting agents

e.g. changing methods or goals.

2.2.5 The Self-adaption module

The Self-adaptation module supervises and coordinates all the other modules. lt continuously

reassesses the coherency of the exchanged information, creates new knowledge and provides

directives to the Goal manager.

The module applies existing knowledge or generates new knowledge by combining reasoning and

run-time analysis techniques to detect significant changes in the environment that require

responsive adaptation. For instance, it applies monitoring or analysis techniques to the environment

model to detect critical situations; it also canuse learning techniques to estimate parameters or

detect abnormal situations.

The adaptation directives to the Goal Manager concern:

1) Change of parameters affecting the choice of the managed goals, especially estimates of dynamic

characteristics of the environment components;

2) Change of the set of the managed goals (adding or removing a goal), in response to some

exceptional event in the environment or to an explicit requirement through interaction with another

agent.

3. Autonomous system design complexity issues

An interesting technical question is how to adequately choose the autonomy level for risk-benefit

optimization in system design. Four main factors determine this choice.

The first is the required degree of trustworthiness. For critical complex systems, semi-autonomy

seems to be the realistic choice under the current state of the art e.g. ADAS cars.

The other factors are three independent types of complexity discussed below: autonomie complexity,

design complexity and implementation complexity.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

13

3.1 Autonomie complex:ity

We need a concept of complexity accounting for the specific difficulty to build autonomous systems.

The following factors related to the fundamental aspects of autonomy, capture autonomie

complexity.

1. Complexitv of perception characterizes the difficulty to interpret stimuli provided by the

environment and to timely generate corresponding inputs for the agent environment model.

lt has various sources such as stimuli ambiguity (admitting different interpretations) or

vagueness (fuzzy or noisy stimuli). Additionally, complexity is aggravated with the volume of

stimuli data ta be analyzed in order to extract relevant input information.

2. Lack of observability/controllability which implies partial knowledge of the agent's

environment and consequently limitations for building a faithful run time model by the

Reflection module. This affects the ability to build plans and act on the environment.

3. Complexitv of goal management which is the complexity of the process of choosing amongst

a set of goals a maximal subset of compatible goals characterizing a strategy for which a

consistent plan is generated. The selection process may involve bath qualitative criteria such

as priorities and quantitative criteria such as optimization of physical quantities.

4. Complexity of planning which directly depends on the type of goals and the complexity of the

agent's environment model. As explained goals may be as simple as non-violation of a

constraint and more complicated such as reachability of a condition or achieving optimality

over a given time period.

S. Complexity of adaptation which is directly related to uncertainty about the agent's

environment. Sources of uncertainty are multiple, including time-varying load, dynamic

change due to mobility, bursty events, and most critical events such as failures and attacks.

The Self-adaptation module generates objectives to cope with such situations involving

imperfect knowledge and lack of predictability [2,5]. This can be achieved to some extent,

using knowledge, e.g.[8].

Note that reduced observability is a source of uncertainty. Nonetheless, uncertainty is not

completely resolved by simply enhancing observability [2].

Note that for agents not directly interacting with a physical environ ment, autonomy simply means to

cope with the complexity of goals and some uncertainty e.g. an encoder adapting to varying load to

avoid frame skipping. For a chess robot, only complexity of goals and planning are relevant; its

environment is fully observable/controllable without uncertainty and the stimuli are non-ambiguous.

For robocars, all types of complexity are relevant.

3.2 Design complex:ity and its relationship to autonomy

System design complexity characterizes the difficulty to build a system out of components

autonomous or net. lt is conceptualized in a two-dimensional space [2].

One dimension represents reactive complexity [10] of the agents constituting a system.

The other dimension represents the complexity of the architectures used to coordinate the agents.

Although design complexity is independent from autonomie complexity, it is interesting to

understand how the demand for autonomy affects system design choices.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

14

3.2.1 Reactive complexity

Reactive complexity characterizes the intricacy of the interaction between an agent and its

environment. lt is independent from space complexity or time complexity measuring the quantity of

computational resources needed by an agent.

We discuss below a classification of agents accordins to their reactive complexity (Fisure 5).

• The simplest asents are transformational agents where the relation of the input to the

output is sufficient to characterize their behavior. Computation is performed in batch mode

without reference to any operating environment. Such agents are often software systems

oblivious to real-time constraints, with simple well-defined environments. Adaptation

consists in using precomputed knowledge to cope with inherent complexity of decision

problems, e.g. intelligent resource orchestration in data centers, intelligent persona!

assistant, game playing agent.

• Streaming agents compute functions on streams of data. For a given input stream of values,

they compute a corresponding output stream. The output value at some time t depends on

the history of input values received by t. The goals for streamers deal with functional

correctness and specific time-dependent properties such as latency. Data-flow systems are

usually composed of streamers. Adaptation is essential to cope with load unpredictability

and meet latency constraints, see for example [11]

~T(a)

~ ·
Tronsron-notlonot ogont o .g .
lnto lllgont Por-aonol A sslstont

Embedded Age nt
e.g. F tlght oontro ller

Arrivnl t i m e Roaponso lime

Î,__. < 101oncy --1'
ohçdo • I S tronmor 1 o'b' c "<fp'

Stro.amlng Agont
o .g . EncOdof"', SlgnoJ procossor

Phyaical
Oueintlty

Cyber phyetcal

~ e_dded 1 ,________

L_LfF~=·=· ::' ·=v=.Y\A=··=-··=-=··=···=-=GJ=·=rJ~__J :;i:,~~~~
Cyber phyelcâl eigent
e .g. Self-drlv lng cor

Figure 5: Classification of asents according to their behavioral complexity

• Embedded agents continuously interact with a physical environment to ensure global

properties. They are mixed HW/SW systems where real-time behavior and dynamic

properties are essential for correctness. Autonomous behavior is required when their

mission involves high-level goals and complex environments, in particular to adaptively

manage computational resources and meet critical soals. Embedded agents are integrated in

industrial systems, transport systems and all kinds of devices.

Note that the model of embedded agents should account for the behavior of their internai

environment including computational resources (see discussion below).

• A cyber physical asent is an embedded agent intesrating in its internai environment objects

that are exclusively under its control. lts behavior involves both discrete and continuous

variables representing the state of the integrated abjects.

The environment model of such an agent should be refined to distinguish between internai

and external environment as shown in Figure 6. The Perception module gets sensory

Autonomous Systems- An Architectural Characterlzatlon, Joseph Slfakls, November 2018

15

information from both the external and the internai environment model. The Reflection

module builds/updates the two models corresponding to the two environments. The

decision process is applied to the product of the environ ment models to generate plans with

commands acting on both environments.

Cyber physical systems seek a tight integration between computers and their physical

environment. They are essential for building complex autonomous systems e.g. self-driving

cars.

Knovvledge
Repository

Self-adaptation

Knowled e
application

Perception

Reflexion

/''~~::r-;.;-~;-----,,,
\ Environment)

---J.Q~~--=~--'',/

,,,. --,~ternal - ~
\., Environment)

'--J.Q~~--=~---''/

Decision

Goal management

Planning

Internai
Actuators

comman , s

Figure 6: Computational model for cyber physical agent

3.2.2 Architecture complexity

E xternal
Actuators

The proposed model in 2.1 provides a basis for classifying system architectures according to their

degree of dynamism, from static to self-organizing architectures as shown in Figure 7.

We enumerate some representative cases below for increasing complexity of coordination.

a) Static architectures involve a given number of agents and abjects, with fixed coordinates e.g. a

smart building with fixed microcontrollers and electromechanical equipment.

b) Parametric architectures can have arbitrary initially known numbers of " pluggable" components

for fixed coordination patterns e.g. token ring architecture, an array computer.

c) Dynamic architectures are parametric architectures with dynamic creation/deletion of agents or

objects, e.g. array architecture for the Game of Life, client-server architecture.

d) Mobile architectures are dynamic architectures where also the coordinates of objects and agents

can change dynamically, e.g. swarm robotic system. Additionally, they may involve dynamic change

of maps when mobile agents explore a space and progressively build a model of their environ ment.

e) Self-organizing architectures are mobile architectures with many dynamically changing motifs e.g.

for robocars, soccer playing robots. Self-organization is the ability to adapt coordination rules to

changing system dynamics.

Autonomous Systems - An Architectural Characterization, Joseph Sifakis, November 2018

16

Motifs Single motif Many motifs Dynamic
motifs

Interactions Static Parametric
interactions interactions

NO YES

NO YES

NO YES

NO YES

Many conflicting Dynamic
goals goals

Agent Softvvare Hardware/ Cyber
Software physical

Architecture Centralized Decentral ized Distributed

Figure 7: Variation of system complexity with respect to architecture, goals and implementation

We have shown that all these types of architectures can be formalized as operators taking as

arguments arbitrary numbers of instances of agent and objects types [3,4,5]. We badly need theory

for studying their properties in a compositional manner. Knowing the properties of the types of

objects and agents involved, is it possible to infer global system properties? A more ambitious

avenue is to develop theory for correctness by construction [6]: how to combine basic architecture

patterns with well-established properties in order to build complex architectures that preserve the

properties. These are largely open hard problems that urgently need exploration.

Agrlcullural
Robo

•

Figure 8: Design complexity

î
en
~
w
1-en
>en

Figure 8 illustrates design complexity for different types of systems depending on the reactive

complexity of their agents and their architectural complexity. Note the separation between services

and systems. Services use streamers and transformational agents. loT systems with advanced

autonomy features, require mobile or self-organizing architectures and integrate embedded or cyber

Autonomous Systems - An Architectural Characterization, Joseph Sifakis, November 2018

17

physical agents. Self-organization is important for such systems with many conflicting goals.

Nonetheless, contrary to common opinion, self-organization is not an intrinsic property of

autonomous systems. An ordinary distributed system involving agents with explicit controllers

communicating by exchange of non-ambiguous messages is self-organizing if it has multiple

coordination modes. Similar arguments are applicable for other "self'-prefixed properties commonly

considered as characteristic properties of autonomous systems.

3.3 lmplementation complexity

lmplementation is the process that leads to the realization of the designed system model. The latter

can admit different implementations depending on the available computational resources and their

organization. ln rigorous approaches, the outcome of the implementation process is another model

accounting for the physical distribution of agents and features of infrastructure implementing the

model coordination mechanisms [12].

We discuss below main choices for the implementation architecture depending on how/where the

decisions are made and how/where the information is shared between the coordinating agents. We

distinguish three main types of implementation architecture.

1. Centralized architecture where the agents are not geographically distributed. They coordinate

through a shared memory that stores the data of a common Knowledge Repository as well as the

data representing the state of a common environment model. ln other words, each agent directly

modifies/reads a shared data structure representing the motifs with their maps and the associated

addressing functions. Such an implementation presents the advantage of the overall coherency of

decision and coordination. Nonetheless, access conflicts may affect performance. A typical example

is a blackboard architecture equipped with a common knowledge base, iteratively updated by agents

starting with a problem specification and ending with a solution.

2. Decentralized architecture where agents are geographically distributed and there is no central

storage. Every agent makes decisions based on local knowledge and the resulting system behavior is

the aggregate response. Nonetheless, agents can coordinate through local memory depending on the

topology of the environment maps. A typical example are stigmergic systems where mobile

independent agents e.g. ants, robots, use their common environment to for coordination purposes

[13]

3. Distributed architecture where there are no shared data storages. Each agent handles its own data

and makes decisions according toits own goals. Coordination between agents is exclusively through

asynchronous message passing. A key issue for such systems is coherency of coordination between

components to achieve global goals. These are an emerging property of the collective behavior of the

agents.

Distributed autonomous agent systems are today a vast and active research field because of multiple

applications in various demains from blockchain protocols to complex autonomous transportation

systems.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

18

4. Trustworthy autonomous systems - From correctness at design time to
autonomie correctness

Systems Engineering cornes to a turning point moving from small-size centralized non-evolvable

automated systems with predictable environments, to large distributed evolvable autonomous

systems with non-predicable dynamically changing environments.

ls it possible to build trustworthy autonomous systems? As autonomous systems are often critical,

this is the object of a considerable and sometimes heated debate [15]. As explained in [2], the trend

for autonomous systems renders obsolete current critical systems engineering techniques and

standards, such as 15026262 and D0178B, that require conclusive trustworthiness evidence based on

some rigorous design methodology.

lt is remarkable that currently cars with autonomy features are self-certified by their manufacturers,

contrary to most industrial products that are certified by independent authorities. Furthermore,

some carmakers consider that successfully passing an extremely large number of test cases is a

sufficient evidence of trustworthiness.

Trustworthiness is a transversal design issue. lt is not limited to purely functional correctness. A

system is deemed trustworthy if it behaves as expected despite design errors, hardware failures and

any kind of harmful interaction with its human and physical environment, including misuse, attacks,

disturbances and any kind of unpredictable events [6].

We briefly discuss how the rigorous model-based approach for guaranteeing trustworthiness can be

in principle, extended to autonomous systems and the implied technical difficulties.

Currently, model-based approaches for achieving trustworthiness involve two steps.

The first step aims at providing guarantees that some abstract system model representing the

system's nominal behavior satisfies critical system goals. The nominal behavior model usually

assumes that system environment is fully reliable and to some extent predictable. The second step

deals with possible violations of these assumptions for a given implementation.

Building autonomous system models accounting for nominal behavior requires strong expertise on

both modeling and algorithmic aspects. Algorithms describe how individual goals of agents

contribute to achieving global system goals. Their design is a non-trivial problem because they are

distributed or decentralized. Furthermore, they pursue jointly critical and optimization goals for

dynamically changing environments. They allow the management of critical resources {space, time,

memory, energy) by optimizing performance and additionally respecting smoothness conditions.

Typical examples are collision avoidance algorithms for vehicles (cars, aircraft) that manage the

available space respecting requirements on speed and avoiding collision with obstacles. Other

examples are mixed criticality systems involving critical and non-critical features.

Modeling deals with agent nominal behavior description and coordination. Agent nominal behavior

assumes that both the sensors and the Perception function are flawless and that sensory information

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

19

ls correctly lnterpreted lnto predeflned concepts. lt focuses on Reflectlon and Declslon and ln

particular on their dynamic aspects.

Following our approach, the coordination is described as the composition of motifs each one

corresponding to a system mode and solving a specific coordination problem. Model correctness can

be inferred in principle, by proving that the motifs are correct with respect to their coordination

goals and that they are composable [6].

Providing guarantees for complex autonomous systems faces several limitations [2]. One is the

decomposition and formalization of high-level goals in tenns of concrete requirements verifiable on

the system behavioral model. A second limitation concerns our ability to build faithful system

models, especially when they involve cyber physical components. The third limitation is that

machlne-learnlng techniques do not lend themselves to behavloral modellng and should be treated

as ublack boxes".

The second step aims at ensuring trustworthiness for a given implementation taking into account

deviations from nominal behavior e.g. possible harmful events such as failures and security threats. lt

starts from the characterization of trustworthy states for nominal behavior provided by the first step

(Figure 9). lt involves a more or less exhaustive analysis to identify all kind of harmful events and

their possible effect. Then, for each harmful event, specific techniques are used to ensure resilience

e.g. typically, redundancy-based techniques. This practically means that the occurrence of a single

harmful event does not (lmmedlately) compromise system trustworthlness. lt leads to some non

fatal state from which using DIR (Detection, Isolation, Recovery) mechanisms it is possible to bring

the system back to a trustworthy state [14].

This approach has been successfully applied to small, centralized critical systems. lt is costly and

leads to overprovisioned systems [6] as it consists in estimating independently, for each type of

harmful event and associated DIR mechanism, worst-case situations and statically reserving the

needed resources to cope with them. lts application to autonomous systems is even more difficult as

the characterization of the effect of harmful events depends on complex environmental conditions.

Such a characterization cannot be enumerative and exhaustive; it should be symbolic and

conservatlve, the result of a global model-based analysls.

Figure 9: Recovery from non-fatal states

Autonomous Systems- An Architectural Characterlzatlon, Joseph Slfakls, November 2018

20

1 \"chiclc Failurc 19 ,Vehicle(s) Drifling - Same Direction
12 Control Loss With Prior Velude Action 20 \ ·ehicle(s) Making a M aneuver - Oooosite Direction
3 Control Loss Without Prior Vchicle Action 23 Lead \·ehicle Accelerntin~
4 Rmmirnz. Red LiRht
5 Rmming Stop Sign 24 Lead \'ehiclc ~loring at Lo11er Constant S cd

~

6 Road Edge Deparn1re With Prior \"ehicle :\llaneuver 25 Lead Yehicle Decelerating
7 Road Edge Departure Without Prior Vehicle Maneuver 26 Lead Yehicle Stoooed
8 Road Edge Departure While Backing Up 27 Lefi T um Across Path From Oooosite Directions at Si211alized Junctions
9 Animal Crash With Prior Vehicle Maneuver 28 \'elucle Tunun2 Ri~t at S12nalized Juncuons
10 Animiil Crnsh \Vithout Prior Vchiclc Miincuvcr 29 lefi Tum Across Path From Oooosite Directions at \ on-Signalized Jw1ctions
11 Pedestrian Crash With Prior Vehicle Maneuver

19. Straight C'rossing Paths at 'on-Signalited Junctions
12 Pedestrian Crash Without Prior \"ehicle Maneuver

1l J:edalcJ'.clist Crash \.Vith Prior Vehicle Maneuver 31 ~hicle(s) Turning at Non-Signalized Junctions

14 Pedalcyclis t Crash Without Prior Vehicle Maneuver 32 faasire Action \\ïth Prior \'ehicle Maneurer

15 Backing Up Tn10 Another Vehicle 33 Erasire Action \\'ithom Prior Yehicle ~laneul'er

16 \ "ehicle(s) Tuming - Same Direction 34 Non-(ollision Incident
17 Vehicle(s) Parking - Same Direction 35 Object Crash With Prior \' ehicle Maneuwr
18 \"ehicle(s) Changing Lanes - Same Direction 36 Q!>Ect Crash \\"ithout Prior \"chiclc Mancu1·cr

~

37 Other

Figure 10: Pre-Crash Scenarlo Typology coverlng 99.4 percent of all light-vehicle crashes for

5,942,000 cases, DOT HS 810 767, April 2017

This fact is illustrated by the pre-crash failure typology shown in Figure 10. For example, "Vehicle

failure" needs further detailed and complex analysis to identify recovery policies, depending on the

conditions under which this event occurs.

For autonomous systems, a key idea is to replace the individual DIR mechanisms developed at design

time, by adaptive mechanisms managing system resources globally to achieve, first of all critical goals

and plan best-effort goals according to resource availability. Such an approach would avoid

overprovisioning of traditional approaches and would close the existing gap between critical and

best-effort systems engineering [6].

Moving from correctness at design time to autonomie correctness requires not only cutting-edge

theory but also finding adequate tradeoffs between quality of contrai and performance. The

adaptive DIR process involves complex decision methods that may affect the ability to react promptly

for timely recovery.

To conclude, the proposed computational model for autonomous systems can provide a basis for

studying model-based autonomous system design. Nonetheless, we are far from ensuring that the

conditions are in place to develop rigorous design flows.

Autonomous Systems - An Architectural Characterization, Joseph Sifakis, November 2018

21

5. Discussion

The main characteristic of autonomous systems is their ability to handle knowledge about their

situation and adaptively respond to environment changes. The identified aspects of autonomy have

some similarity with types of awareness exhibited by human mind [7].

Closing the gap between artificial and human autonomy encounters several difficult to overcome

barri ers.

A first barrier is that human mind understands goals in terms of high-level concepts. lt is not trivial to

link concepts to massive information collected by sensors or to commands of actuators. The

Perception process should be robust and reliable for dynamically changing environment conditions.

Similarly, there is a big distance between directives such as "deviate from the reference trajectory to

avoid the obstacle" and their implementation in terms of concrete goals from which corresponding

plans are effectively computed [2].

A second barrier is that situation understanding by humans is largely rooted in common sense

reasoning. Our mind has built and continuously maintains since our birth, a complex semantic model

of both our external and internai environments. lt is practically impossible to elicit all the knowledge

encompassed by such a model. No need to understand Newton's laws to expect that apple fall out of

trees, that parents are aider than their children are, etc. The important question is how close

computers can get to a solution ofthis problem.

As humans have innate knowledge, we can equip an agent at design time with built-in knowledge

and a faithful model of its initial environment. Then the agent's Reflection function should: 1) have

access to a huge Knowledge Repository involving ail common concepts and their relations; and 2) be

able to consistently update the environment model by matching the perceived information to

predefined knowledge patterns.

A third barrier for computers is matching human self-adaptation and the capacity: to supervise the

state of acquired knowledge; to understand never encountered situations; and ta create new goals.

Goal creation and handling is a grand challenge of autonomy. How to assign individual goals to

agents so that they all together concur to the achievement of given global system goals?

The paper provides a technical characterization of autonomy as the combination of five basic and

independent features. lt clearly separates aspects that are essential for autonomie behavior from

other general systems engineering aspects. ln that respect, it differs from other approaches using a

large number of poorly understood "self'-prefixed terms: Self-configuration, Self-healing, Self

optimization, Self-protection, Self-regulation, Self-learning, Self-awareness, Self-organization, Self

creation, Self-management, Self-description [16,17]. Such characterizations based on technically non

substantiated terms obscure the debate about the very nature of autonomy.

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

22

A main conclusion is that autonomy should be associated with functionality and not with specific

techniques. Machine learning is essential for removing ambiguity from complex stimuli and coping

with uncertainty of unpredictable environments. Nonetheless, it can be used to meet only a small

portion of the needs implied by autonomous system design. Furthermore, it is net the only way to

build perceptors and controllers.

Autonomy is a kind of broad intelligence. The current Al vision is too much influenced by Turing's test

that considers intelligence as a verbal game between a human and a computer. Nonetheless, animais

are not verbal and exhibit intelligence. A big deal of human intelligence is not verbal.

Intelligence is not just automation of decisions even if this requires the computation of strategies

with exploding complexity. Our characterization as the combination of five different types of abilities

shows a big difference between an autonomous vehicle and a game playing robot. The situation

awareness required for the robot is minimal. The stimuli and the environment models are trivial to

interpret and build. The rules of the game are well-understood and can be directly related to goals.

Computers would exhibit intelligence when they can handle knowledge (create and use knowledge)

so as to cope with the ever changing reality as humans do. Building trustworthy and optimal

autonomous systems goes for far beyond the current Al challenge.

References

[1] Oded Ma Ier, Amir Pnueli and Joseph Sifakis, On the Synthesis of Discrete Controllers for Timed

Systems, Proceedings of STACS'95, volume 900 of Lecture Notes in Computer Science, pages 229-

242.

[2] Joseph Sifakis, System Design in the Era of loT- Meeting the Autonomy Challenge, lnvited paper,

MetRiD 2018, EPTCS 272, 2018, pp. 1-22, doi:l0.4204/EPTCS.272.1

[3] Rocco De Nicola, Alessandro Maggi, Joseph Sifakis, DReAM: Dynamic Reconfigurable Architecture

Modeling. ISOLA (3) 2018: 13-31

[4] Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis, Four Exercises in Programming

Dynamic Reconfigurable Systems: Methodology and Solution in DR-BIP. ISoLA (3) 2018: 304-320(5]

[5] Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis, Programming Dynamic

Reconfigurable Systems. FACS 2018: 118-136.

[6] J. Sifakis, Rigorous System Design, in Foundations and Trends in Electronic Design Automation,

vol. 6, num. 4, p. 293-362, 2012.

(7] Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre Glette, Tao Chen, Rami Bahsoon, Jim

T0rresen, Xin Yao, Architectural Aspects of Self-Aware and Self-Expressive Computing Systems: From

Psychology to Engineering. IEEE Computer 48(8): 62-70 (2015).

[8] S. Bensalem, M. Bozga, J. Quilbeuf and J. Sifakis, Optimized distributed implementation of

multiparty interactions with Restriction, in Science of Computer Programming, vol. 98, num. 2, p.

293-316, 2015.

[9] Martina Maggie, Tarek Abdelzaher, Lukas Esterle, et al, Self-adaptation for lndividual Self-aware

Computing Systems, Springer International Publishing AG 2017, S. Kounev et al. (eds.), Self-Aware

Computing Systems, 00110.1007/978-3-319-47474-8_12.

[10] S. Efroni, D. Harel, l.R. Cohen, Reactive animation: Realistic modeling of complex dynamic

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

23

systems, Computer, January 2005.

(11] Jacques Combaz, Jean-Claude Fernandez, Joseph Sifakis and Loïc Strus. Symbolic quality control

for multimedia applications Real-Time Journal, Volume 40, Number 1, October 2008.

(12] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung

Nguyen, Joseph Sifakis, Rigorous Component-Based System Design Using the BIP Framework, IEEE

Software 28(3): 41-48 (2011).

(13] S. Nouyan, R. Gross, M. Bona ni, F. Mondada, M. Dorigo, Teamwork in self-organized robot

colonies, IEEE Transactions on Evolutionary Computation 13(4) (August 2009).

(14] A Zolghadri, Advanced model-based FDIR techniques for aerospace systems: Today challenges

and opportunities, Progress in Aerospace Sciences 53, 18-29.

(15] Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua "On a Formai Model of Safe and

Scalable Self-driving Cars", Mobileye, 2017, arXiv:1708.06374v5 [cs.RO].

(16] Wiki pedia https://en. wikipedia.org/wiki/Autonom ic corn puting

(17] Jeffrey Kephart, William Walsh, An Artificial Intelligence Perspective on Autonomie Computing

Pol ici es, Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and

Networks (POLICY'04).

Autonomous Systems -An Architectural Characterization, Joseph Sifakis, November 2018

