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Université Grenoble Alpes
Grenoble, France

Abstract—We study a novel principle for safe and efficient
collision avoidance that adopts a mathematically elegant and
general framework making as much as possible abstraction
of the controlled vehicle’s dynamics and of its environment.
Vehicle dynamics is characterized by pre-computed functions
for accelerating and braking to a given speed. Environment is
modeled by a function of time giving the free distance ahead of
the controlled vehicle under the assumption that the obstacles are
either fixed or are moving in the same direction. The main result
is a control policy enforcing the vehicle’s speed so as to avoid
collision and efficiently use the free distance ahead, provided
some initial safety condition holds.

The studied principle is applied to the design of a synchronous
controller. We show that the controller is safe by construction.
Furthermore, we show that the efficiency strictly increases for
decreasing granularity of discretization. We present the imple-
mentation and experimental evaluations in the Carla autonomous
driving simulator and investigate various performance issues.

Index Terms—Safe and efficient collision avoidance, Au-
tonomous vehicles, Model based design

I. INTRODUCTION

As a fundamental requirement for autonomous vehicle con-
trol, the problem of collision avoidance has been widely inves-
tigated using a variety of approaches and frameworks. The as-
sumptions underlying the adopted frameworks vary regarding
the level of modeling of the dynamics of the controlled vehicle,
the number of vehicles and the type of their trajectories or the
nature of the controller stimuli. Control-based techniques [1],
[7], [8] typically focus on the collision avoidance for adaptive
cruise control. Such techniques allow achieving optimality
without however providing safety guarantees. Another line of
work applies formal methods and model-based design, e.g.,
reachability analysis [5], [9], Responsibility-Sensitive Safety
(RSS) model [11], logic-based controller synthesis [6], [10], as
well as the design of specific safety supervision mechanisms
[3], [4]. Although such work can guarantee correctness by
construction, they may result in policies that achieve strict
safety at the expense of efficiency or performance.

We propose a novel principle for safe and efficient collision
avoidance. We adopt a mathematically simple and general
framework making abstraction of the controlled vehicle’s
specific dynamics and of its environment, and using only three
functions: (1) the free distance function F (t) which determines
for the vehicle the estimated free distance from the closest

obstacle ahead at time t; (2) the accelerating function A(V, v)
which gives the distance travelled by the vehicle when acceler-
ating from initial speed V to speed v; (3) the braking function
B(V, v) which gives the distance travelled by the vehicle when
braking from V to speed v (v < V ). The principle consists in
the application of a simple induction rule. If at some time t
the speed of the vehicle with respect to the distance F (t) is
safe, i.e. B(V, 0) ≤ F (t), then the speed will be controlled to
remain safe under the assumption that F (t) does not change
faster than the vehicle can brake. This assumption always
holds when the obstacles ahead are fixed or move in the same
direction as the controlled vehicle. Furthermore, if safety can
be guaranteed for speed V and B(V, 0) ≤ F (t) then in order to
efficiently use the available space F (t)−B(V, 0), we apply an
accelerating/braking policy: we accelerate to a certain speed
v > V , from which it is still possible to safely brake. So
efficiency boils down to computing the maximum target speed
v such that 0 ≤ F−(A(V, v)+B(v, 0)). The control principle
consists in the dynamic application of the accelerating/braking
policy for a set of possible speed levels between speed 0 and
the limit speed of the vehicle.

We provide a synchronous controller for safe and efficient
collision avoidance, which is driven by periodically sampled
values of the free distance F . We prove that this controller
is safe and efficient. We also present the implementation
and experimental evaluations in the Carla autonomous driving
simulator and investigate various performance issues.

Our approach is characterized by the following:
1) It makes abstraction of the vehicle dynamics through the

use of accelerating and braking functions that provide
all the information needed for safe and efficient control.
These functions are a kind of contract between the con-
troller and the controlled vehicle. Their use frees us from
the obligation to model vehicle dynamics. Furthermore,
it leaves completely open the way features related to
comfort such as the jerk profile are implemented.

2) Although we consider the problem in one dimension and
the environment is modeled by a free distance function
F (t), the result can be easily extended to two dimensions.
In that case F (t) and B(v, V ) become areas and the
safety test consists in checking their inclusion.

3) The control principle is robust and easy to adapt to
varying uncertainty in the measurement of F or in the978-1-7281-9148-5/20/$31.00 © 2020 IEEE



estimation of the functions A and B.
4) The proposed implementation does not have any specific

hardware requirements and require very limited com-
puting resources as they combine pre-computed control
policies.

5) Finally, the adopted control principle is simple and in-
ductive: if at some step the distance is safe then a speed
increase by some quantity will not jeopardize safety. This
induction hypothesis is used to prove correctness.

The paper is a short version of [12] where proofs and
more details experimental results are provided. Section II
presents the framework and the principle of safe and efficient
collision avoidance control. Section III presents the design
of the collision avoidance controller. Section IV presents the
implementation and performance evaluations using the Carla
simulator. Section V concludes about the relevance of the
results and outlines directions for future work.

II. SAFE AND EFFICIENT COLLISION AVOIDANCE CONTROL

The aim is to control the movement of a vehicle travelling
in a one-way lane, so as to 1) avoid collision with other objects
that may be fixed or moving in the same direction (i.e., safety);
and 2) use the available free distance ahead in the best possible
manner to minimize travelling time (i.e., efficiency).

Our work relies on a mathematically abstract framework
characterized by three functions. We denote by v the speed
variable of the vehicle and by V its initial speed.
• The function F (t) gives the free distance at time t

between the controlled vehicle and the closest obstacle
ahead, which either moves in the same direction or is
stopped.

• The braking function B(V, v) is a partial function defined
in the interval 0 ≤ v ≤ V . It gives the distance travelled
by the controlled vehicle when braking from the initial
speed V to a target speed v. In Fig.1 it is graphically
illustrated by the green curves. When the target speed
v = 0 (i.e, the vehicle brakes to stop), this function is
abbreviated as B(V ) for simplicity.

• The accelerating function A(V, v) is a partial function
defined in the interval V ≤ v ≤ VL, where VL is a given
limit speed for each vehicle. It gives the distance travelled
by the vehicle when accelerating from an initial speed V
to a target speed v. In Fig.1 it is graphically illustrated
by the black curves.

We make no specific assumptions about the implementation
of accelerating and braking functions, e.g. whether accelera-
tion and deceleration are constant or variable. Nonetheless, we
require that the following additivity and strict monotonicity
properties hold.
• B(V, V ) = 0 and A(V, V ) = 0.
• Additivity property:

B(V, v1) +B(V1, v2) = B(V, v2), where v1 = V1

A(V, v1) +A(V1, v2) = A(V, v2), where v1 = V1

Fig. 1. Braking and acceleration distance functions (D is the distance travelled
and v is the speed)

• Strict monotonicity:

B(V, v1) < B(V, v2), when v1 < v2

A(V, v1) < A(V, v2), when v1 < v2

We progressively study the safe and efficient collision
avoidance problem for a vehicle moving in a one-way lane. We
first study the problem for a stationary obstacle ahead. Then
we study algorithms that solve the problem for dynamically
changing free distance. We assume that the movement is
controlled using commands for accelerating and braking from
a speed V to some target speed v whose effect is modeled by
the functions A(V, v) and B(V, v), respectively.

A. Control for safety

The basic idea for avoiding collision is to moderate the
speed of the vehicle and anticipate the changes of the free
space ahead so as to have enough distance and time to adjust
and brake. If the vehicle moves with speed V at time t, then
for safety the free space ahead F (t) should be longer than
the braking distance B(V ), which is the minimal safe braking
distance for speed V . The Theorem below formalizes this idea.

Theorem 1. If at time t the speed Vt of the vehicle is safe with
respect to F (t), i.e., B(Vt) ≤ F (t) and for any time t +4t
it is possible to set the speed to a value Vt+4t such that the
condition F (t)−F (t+4t) ≤ B(Vt)−B(Vt+4t) holds, then
the vehicle is always safe.

This theorem suggests a simple and safe control policy
that ensures collision freedom. For any time t, the vehicle
only needs to keep track of the free distance ahead F (t) and
check in real-time whether F (t) is greater than the minimal
safe braking distance B(Vt) for the current speed Vt. It starts
braking as soon as F (t) reaches the minimal safe braking
distance. In this way, it is guaranteed that if the obstacles
ahead do not move in the opposite direction, no collision
would happen.

B. Achieving efficiency for fixed obstacles

The above result provides a basis for ensuring collision
freedom. Nonetheless, it leaves open the question of how the



vehicle can efficiently use the available distance ahead by
minimizing the travelling time. What would be an efficient
driving policy when the free headway distance is greater than
the minimal safe braking distance? We consider that a policy
defines the speed function v(t) in response to a free distance
F (t). An Accelerating/Braking policy (A/B policy) is a policy
of accelerating first to some speed and then braking. Similarly,
an Braking/Accelerating policy (B/A policy) is the policy of
braking first to some speed and then accelerating. A Constant
speed/Braking policy (C/B policy) is the policy of moving at
constant speed and then braking. A policy is safe if the relative
distance between the controlled vehicle and the obstacle ahead
is positive. It is efficient if increasing the speed value v(t)
enforced by the policy at any point would compromise safety.

The problem is to minimize the travelling time for a
given distance, which implies to maximize the average speed.
Consider the scenario where the speed of the vehicle is V
and there is a stationary obstacle ahead at distance F , which
is greater than the braking distance B(V ). The application
of an A/B policy consists in computing an appropriate target
speed v, V < v ≤ VL, accelerate the vehicle to v and
then brake to full stop. To ensure collision freedom, the
total travelled distance A(V, v) + B(v) must be such that
A(V, v) + B(v) ≤ F . The maximal target speed is given by
the condition vM = max{v | F ≥ A(V, v) + B(v)}. Such
a speed exists as both acceleration and braking functions are
monotonically increasing with respect to the target speed v.
Notice that either vM ≤ VL and F = A(V, vM ) + B(vM ) or
vM = VL and F > A(V, vM ) +B(vM ).

As an example, for motion at constant acceleration and
deceleration (a and b, respectively), we have A(V, v) =
v ∗ (v − V )/a + (v − V )2/2 ∗ a and B(v) = v2/2 ∗ b.
Then the safety condition becomes F ≥ v ∗ (v − V )/a +
(v − V )2/2 ∗ a + v2/2 ∗ b, from which we deduce v ≤√

(2 ∗ a ∗ b ∗ F + b ∗ V 2)/(a+ b). Thus the maximal target
speed vM =

√
(2 ∗ a ∗ b ∗ F + b ∗ V 2)/(a+ b). As we re-

quire that v ≥ V , we have F ≥ V 2/2 ∗ b = B(V ) and
thus the maximal target speed always exists. Let vF denote
the speed reached by accelerating along distance F (t), i.e.,
v2F −V 2 = 2 ∗F (t) ∗ a, then the formula can be simplified as
vM = vF ∗

√
b/(a+ b).

Fig. 2. The A/B control policy for different values of the free distance F
ahead

Fig. 2 illustrates the A/B control policy where F is the free
distance ahead and v is the speed of the controlled vehicle.
The green curves illustrate braking phases and the black the
accelerating phase from an initial speed V1. For F = F1, the
maximal target speed V ′1 is less than the limit speed VL. The
A/B policy consists in accelerating to V ′1 , and then braking
until the vehicle stops having travelled exactly distance F1.
If the free distance ahead is F = F2, the maximal target
speed will be the limit speed VL. The A/B policy will similarly
accelerate first to the limit speed and then brake to stop at
F2. Finally, if F = F3 > F2, then after accelerating to the
limit speed VL, the vehicle will maintain constant speed VL
for distance F3 − A(V1, VL)−B(VL) and then brake for the
remaining distance to stop at F3.

Theorem 2. If the speed V of the vehicle is safe with respect
to F , i.e.,B(V ) ≤ F , then the A/B policy is always safe and
efficient for F .

The above result implies that for the given free distance F ,
the A/B policy is the most efficient and that from the given
initial speed there is a maximal speed that minimizes the travel
time of F .

III. CONTROLLER DESIGN FOR COLLISION AVOIDANCE

A. The control principle

We study a control principle for collision avoidance based
on the above results. We consider that the vehicle speed can
change between a finite set of increasing levels v0, v1, ..., vn,
where n is a constant, v0 = 0 and vn equals to the limit speed
vL. The triggering of acceleration and braking from one level
to another is controlled according to the free distance ahead
and based on bounds computed as follows, for each speed
level vi, i ∈ [1, n],
• Bi = B(vi) is the minimal safe braking distance needed

for the vehicle to fully stop from speed vi;
• Di = A(vi−1, vi) + B(vi) is the minimal safe distance

needed for the vehicle to apply an A/B policy accelerating
from speed vi−1 to vi and then braking from vi to stop.

We show that the following function specifies the highest
safe speed level v as a function of the current speed of the
vehicle V and the free space ahead F , provided that their
initial values V0 and F0 are such that B(V0) ≤ F0.

v = Control(F, V )

v =


vi+1 when V = vi ∧ F = Di+1

vi−1 when V = vi ∧ F = Bi

vi when V = vi ∧Di+1 > F > Bi

Note that this control principle is purely functional. It as-
sumes that changes of the free distance ahead F can be contin-
uously monitored to instantaneously produce correspomding
speed changes.

Fig.3 illustrates the principle for n = 4 speed levels. As the
value of F increases, the speed of the vehicle switches between
levels. Safety is preserved by construction. The vehicle can



Fig. 3. Illustration of the collision avoidance principle for n = 4

accelerate to a higher level, if it can safely and efficiently use
the available distance by applying an A/B policy. It brakes to
a lower level if the available distance reaches the bound for
safe braking.

Fig. 4. Automaton modelling the collision avoidance principle

Fig.4 provides a scheme for the computation of
Control(F, V ) in the form of a finite state automaton.
The locations correspond to traveling at constant speeds
v0, ..., vn. The transitions model instantaneous acceleration
and braking steps triggered by conditions involving the free
distance F and the precomputed bounds Bi and Di. If the
control location is vi and the free distance ahead equals to
the minimal safe acceleration distance (i.e., F = Di+1),
then the automaton moves to location vi+1 after the speed
is accelerated to vi+1. If the free distance ahead reaches
the minimal safe braking distance (i.e., F = Bi), then
the automaton moves to location vi−1 after the speed is
decelerated to vi−1. Recall that Bi = Bi−1 + B(vi, vi−1).
Thus, after braking to vi−1 there is still enough space for safe
braking. Note that checking point conditions makes sense
because F has no jumps and computation is instantaneous. If
none of the triggering conditions holds, then the free distance
ahead F is such that Bi < F < Di+1. The automaton stays
at location vi and the speed remains unchanged.

Note that the automaton of Fig.4 cannot be implemented as
a controller because we assume that F is continuously observ-
able and changes of the controlled speed are instantaneous. In
the next section, we show how to design a practical controller
by refining this automaton.

Theorem 3. The collision avoidance principle is safe. More-
over, its efficiency is strictly increasing for increasing number
of speed levels n.

As explained, computing the exact value of the optimal

speed for a given distance may be costly. Considering discrete
speed levels allows pre-computing for each level both the
minimal safe braking distance and the minimal safe accel-
erating distance between levels. In that manner, we avoid the
computational complexity of adjusting in real time the vehicle
speed.

B. Synchronous controller design

We propose a synchronus controller applying the presented
collision avoidance principle. It is driven by periodic updates
of the free distance variable F for an adequately chosen period.
We have also studied an asynchronous controller where the
free distance variable F is updated sporadically [12].

The controller interacts with its controlled environment (the
vehicle) through input and output events. The output s is
a state variable indicating the currently applied command
(i.e., accelerating, braking or constant speed). The input event
UpdateF receives the periodic measurement F ′ of the free
distance with period T , while input events ca and cb signal
the completion of the accelerating and braking command
respectively. Initially, the speed v of the vehicle is set to a
level vi that is safe with respect to the initial distance F (i.e.,
F ≥ B(vi)).

The controller is a refinement of the ideal controller where
we assumed that speed changes were instantaneous. Its is
described by the following set of guarded commands and also
depicted as an extended automaton for the sake of clarity in
Fig.5.

do

� ∃i ∈ [1, n].s = Csp(vi) ∧ F ′ ≥ D′i+1

→ s := Ac(vi, vi+1); ba

� ∃i ∈ [1, n].s = Csp(vi) ∧B′′i ≥ F ′ ≥ B′i
→ s := Br(vi, vi−1); bb

� ∃i ∈ [1, n].ca ∧ s = Ac(vi, vi+1)→ s := Csp(vi+1)

� ∃i ∈ [1, n].cb ∧ s = Br(vi, vi−1)→ s := Csp(vi−1)

� UpdateF → F ′ := F

od

For guarded commands we adopt the usual semantics: when-
ever the condition on the left hand side holds, the actions on
the right hand side are executed. Note that the input events
appear as conditions while the output event appear as actions.
The variable s keeps track of the kinematic state of the vehicle
that is abstracted by the control states Ac (accelerating), Br
(braking) and Csp (moving with constant speed).

We denote by Ac(vi, vi+1), Br(vi, vi−1) and Csp(vi) the
commands of accelerating from speed vi to vi+1, braking from
vi to vi−1 and moving with speed vi, respectively. When the
vehicle is moving with constant speed, transition UpdateF is
triggered periodically to receive the most recent measurement
of F . Once the triggering condition of accelerating (braking)
is met, transition ba (bb) is taken to initiate the command and
move to location Ac (Br) waiting for its completion.



Fig. 5. Extended automaton modelling the synchronous controller

We do not make any assumption about the time spent at
locations Ac and Br. We simply assume that the distances
needed for accelerating and braking are A(vi−1, vi) and
B(vi, vi−1), respectively. We explain below how the guards
of the controllable transtions bb and ba are computed.

We estimate the maximal safe approximations of the trig-
gering conditions F ≥ Di and F = Bi of the ideal
controller in terms of F ′, the most recently updated value
of F . When the vehicle moves at speed vi, the variables
F and F ′ satisfy a relation of the form F = F ′ − ki(t),
where ki(t) = vi ∗ (t mod T ). That is ki(t) = 0 when F
is updated and ki(t) < vi ∗ T . We assume that T is small
enough so that Di − vi ∗ T ≥ Bi, that is, we do not miss
the braking threshold value Bi in a period. This is reasonable
given that in practice the updating period T is usually less
than 50 milliseconds. Notice that the minimal value of F
will be reached for F = F ′ − vn ∗ T . Thus, it is enough
to require that F ′ ≥ Di + vn ∗ T holds for accelerating and
that Bi+2∗vn∗T ≥ F ′ ≥ Bi+vn∗T holds for braking. So we
adjust the triggering bound for accelerating to D′i = Di+vn∗T
and the least and upper bounds of the interval triggering a
braking to B′i = Bi + vn ∗ T,B′′i = Bi + 2 ∗ vn ∗ T .

Theorem 4. The synchronous controller yields safe control
policies for collision avoidance.

As for the previous theorem, we can prove that the efficiency
of the controller strictly increases for increasing number of
speed levels n. Furthermore, the efficiency depends on how
frequently F is updated as the accelerating and braking
conditions take into account the uncertainty about the values
of F . Thus, the controller may not be able to fully utilize
actually available free distance. As explained for synchronous
controller, the loss in efficiency depends on the value of vn∗T .

IV. EXPERIMENTAL EVALUATIONS

We have implemented the synchronous controller in the
open-source autonomous driving simulator Carla [2]. In the
experiments, we consider scenarios where the controlled ve-
hicle is driving towards a moving vehicle ahead. The speed
of the front vehicle is described by the periodic function
vf (t) = vf0 + vf0 ∗ sin(ω ∗ t), where ω = 2 ∗ π/Tf , Tf
is the period of this speed function and vf0 is a constant. We
choose vf0 = 14 m/s, and thus the speed of the front vehicle
changes in the interval [0, 28 m/s] (i.e., [0, 100.8 km/h]). We
set the limit speed of the controlled vehicle to be 32 m/s (i.e.,
115.2 km/h). The initial distance between the two vehicles is

F (0) = 5m and the initial speed of the controlled vehicle is
0. Thus, the controlled vehicle is initially at a safe state. The
accelerating and braking rates of the two vehicles are both
constant a = b = 2 m/s2.

In order to evaluate the performance and the quality of
the controller, we measure both the speed changes of the
controlled vehicle and the relative distance between the two
vehicles, reflecting the occupancy of the road. The smaller the
distance is, the higher the road occupancy is. We consider that
the free distance is the relative distance increased by the brak-
ing distance of the front vehicle. We perform the evaluations
with respect to the period Tf of vf . For experimental purposes,
the safe accelerating and braking distances for eight speed
levels v[8] = {4, 8, 12, 16, 20, 24, 28, 32} are pre-computed for
constant accelerating and braking rates a = b = 2 m/s2.

First, we evaluate how Tf affects the performance of the
controller for two different values Tf = 10 s and Tf = 30 s.
We assume that the environment updates the free distance
variable with period T = 0.02 s. We take into account in the
evaluation of the free distance the braking distance of the front
vehicle travelling with speed vf (t) = vf0+vf0∗sin(ω∗t). At
time t its braking distance is vf (t)2/2∗bf for a constant brak-
ing rate bf . We take bf = 5m/s2 for experimental purposes.
Then the corresponding safe accelerating and braking dis-
tances are D′i = Di−vf (t)2/2∗bf and B′i = Bi−vf (t)2/2∗bf .

In Fig.6 we compare the results for Tf ∈ {10 s, 30 s} with
sensing period T = 0.02 s and speed level n = 8. The top two
figures compare the dynamics of the relative distance, which
is periodic with period Tf in the steady regime. It decreases
for increasing period Tf . In fact, for slower speed changes,
the controller has more time to adjust the movement of the
controlled vehicle and can better utilize the available distance.
We can also see that when taking into account the braking
distance of the front vehicle, the relative distance between the
two vehicles becomes much smaller. For instance, the minimal
relative distance decreases from 20.11 m for Tf = 30 s to
11.26 m. The performance improvement can also be observed
from the speed diagrams shown in the bottom of Fig.6. Finally,
the speed range of the controlled vehicle becomes larger and
the maximal speed increases from 16 m/s to 20 m/s for
Tf = 10 s.

V. CONCLUSIONS AND FUTURE WORK

The paper presents a novel framework and approach for safe
and efficient collision avoidance for self-driving vehicles. The
framework is model-based and assumes that control policies



Fig. 6. Simulation results for the synchronous controller with and without considering the braking distance of the front vehicle (right and left part, respectively)
for Tf ∈ {10 s, 30 s}.

are implemented as the application of acceleration, braking
and constant speed commands. The presented algorithms do
not make any assumption about the dynamics of the controlled
vehicle except that there are functions giving the traveled
distance when the speed of the vehicle changes by some
quantity. Additionally, the assumptions about the vehicle’s
environment are minimal as it is described by a function F (t)
giving at any time the free available distance ahead.

The assumption that all vehicles move in the same direction
as the controlled vehicle does not limit the generality of our
approach. The same algorithm can also be adapted to two-
dimensional movement. In that case, the function F (t) can be
defined as the maximal convex area containing the controlled
vehicle and such that all the obstacles are outside this area.
The distances A(V, v) and B(V, v) for initial and target speeds
respectively are also replaced by adequately approximated
convex areas so that the safety test boils down to area inclusion
that can be efficiently decided.

This work is part of a project on the design of safe and effi-
cient autopilots for autonomous vehicles. Future developments
include the adaptation of this algorithm to two-dimension
movements, as well as the integration in autonomous vehicle
models of the Carla simulator.
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