

1

Autonomics: In Search of a Foundation for Next Generation Autonomous

Systems

David Harel1, Assaf Marron1 and Joseph Sifakis2

1 Weizmann Institute of Science, Rehovot, Israel

2 Univ. Grenoble Alpes, Verimag laboratory, St Martin d’Heres, France

Abstract

The potential benefits of autonomous systems are obvious. However, there are still major issues

to be dealt with before developing such systems becomes a commonplace engineering practice,

with accepted and trustworthy deliverables. We argue that a solid, evolving, publicly available,

community-controlled foundation for developing next generation autonomous systems is a must,

and term the desired foundation Autonomics. We focus on three main challenges: (i) how to specify

autonomous system behavior in the face of unpredictability; (ii) how to carry out faithful analysis

of system behavior with respect to rich environments that include humans, physical artifacts, and

other systems; and (iii) how to build such systems by combining executable modeling techniques

from software engineering with artificial intelligence and machine learning.

1 Introduction

Autonomous systems are already able to replace humans in carrying out a variety of functions.

This trend will continue in the years to come, with autonomous systems becoming central and

crucial to human society. They will be broadly prevalent, and will include, e.g., vehicles of all

kinds, medical and industrial robots, agricultural and manufacturing facilities, and distributed

management for traffic, urban security, and electric grids.

Many organizations are already striving to develop the next wave of trustworthy, cost-effective

autonomous systems, and researchers are busy building powerful tools and methods for the

development process. However, the required trustworthiness is not achievable with current

practices in software engineering and in artificial intelligence [26]. Extremely high levels of

complexity and criticality present fundamental new challenges. Consider, for example, even a

very modest autonomous system, a valet-parking robot – obviously a far cry from a full

autonomous vehicle. Customers and regulators would be fully justified in asking whether the robot

will be able to discover a child forgotten in the car, or notice that a pet dog is perched underneath

it. Even if it is able to notice these, what will the robot do as a result? How will it react if a human

attempts to stop it by pursuing it and yelling?

Such development challenges cannot be dealt with by merely enhancing the system's safety

features, say, adding sensors and dedicated safety components, and carrying out richer test cases.

Next-generation autonomous systems will be expected to operate under conditions that will often

be unpredictable at the time of their development, due to limited control over the system’s

environment, the dynamic emergence of new kinds of objects and events in the world, and the

exponential growth in the number of composite configurations of such elements, old and new alike.

2

The literature contains interesting demos and discussions of unpredictability in autonomous

systems; see, e.g., the SpotMini video [3] and the discussion of its demonstration environment

[22]. Engineers must be able to assure customers and regulators that the system will function

correctly and safely, even though many of the complex situations it might have to deal with are

still unknown.

We believe that to close this gap between the challenges in developing trustworthy next-generation

autonomous systems and the present state of the art, the research and industry community must

construct a common engineering foundation for developing such systems. This foundation, which

we term Autonomics, should address the unique challenges presented by next generation

autonomous systems, providing engineering principles, methods and tools for their satisfactory

development, as well as means for selecting among multiple design alternatives. We believe that

such a foundation will dramatically accelerate the deployment and acceptance of high quality,

certifiable autonomous systems, built for the benefit of human society.

2 Next Generation Autonomous Systems

2.1 Definitions

Over the years, many definitions have been offered for autonomy (e.g., [18, 11]). Autonomic

Computing (e.g., [7]) focusses on systems capable of self-management, and in particular,

automating dynamic configuration. The broad research area of multi-agent systems (e.g., [24])

pays special attention to the issue of combining local goals with collaboration rules and distributed

algorithms to achieve system-wide overall goals. Autonomy is often associated with self-

awareness (e.g., [15]), which implies the system’s ability to perceive changes of the environment

and use “knowledge” of its own states to react adequately, so that a set of goals is achieved.

Symbiotic Computing (e.g., [8]) studies how autonomous systems can interface and collaborate

with humans and with complex organizations, considering the many technical, commercial, and

ethical implications thereof.

In order to streamline the ensuing discussion, we offer, in this subsection and in the next one,

definitions for some basic concepts (see also [25, 27]), and illustrate them with an example of an

autonomous vehicle for factory-floor and plant yard deliveries (termed here FFAV).

Systems are the artefacts that development teams are out to build. A system works within an

external environment, and it consists of two types of components, agents and objects (the latter, as

explained below, are typically not built by the development team), which, as we shall see, operate

within a common internal system environment. The coordinated collective behavior of the system's

agents and objects is designed to meet some global, system-wide goals.

Objects are those components whose programmed behavior is not affected during system

development. For example, objects of the FFAV system may include ready-made components,

such as the motor, a set of cameras, or a steering mechanism whose input is, say, the desired angle

of the front wheels. A system often interacts with objects that are not part of it, but are part of the

environment. Such are, in the case of the FFAV, machines on the factory floor (which may be

mere obstacles or recipients of deliveries), and packages to be delivered. Objects have states,

3

which can be changed by agents or by other objects, or can change ‘spontaneously’, for internal

reasons.

Agents are the main behavioral elements of an autonomous system. They are those designed

(programmed, built) as part of the system’s development process.1 Agents have agency: they are

proactive and pursue specific goals which may change dynamically. Agents can monitor objects

from the internal and external environments and can change their states. They can also coordinate

their own actions with other agents. Thus, the FFAV system may either have a single agent for all

its functions, or separate agents for different tasks, such as work scheduling, route planning, travel

control, gripping, and carrying. Agents can themselves be autonomous systems, and can, in turn,

hierarchically contain other agents and systems.

The internal environment is the lower-level physical and virtual infrastructure used by the

system's agents and objects. It may include the computer/processor/memory, batteries and other

power sources, the operating system, communication hardware and software, and data-base

management software.

The external environment of a system (often simply called the environment), is the collection

of all entities with which the system might interact. It may include other systems (with their objects

and agents) and stand-alone objects, and any other physical or virtual entities that may affect, or

be affected by, the system's behavior.

2.2 Autonomous Behavior

We say that a system or an agent (for simplicity, we shall stick to system below) manifests

autonomous behavior if it embodies the following five behavioral functions, which are carried out

with little or no intervention from humans or from other systems.

Two functions are combined to enable the system to build for itself a useful representation of the

state of the external environment. Perception is the function that inputs stimuli, interprets their

basic meaning, and removes ambiguity, yielding relevant information. Often perception has to deal

with multi-modal inputs, such as vision, sound, heat, touch, radar, and data communication from

other systems, all obtained using mode-specific sensors and input devices, and has to then

amalgamate the received information. The second function is Model Update, which uses the

information provided by Perception to create and constantly update an integrated run-time model

representing the system's environment and its states. This model will then be used in on-going

decision making.

Two other functions constitute the system’s adaptive decision process. This means that decisions

consider many possibly conflicting goals, in a way that depends on the system’s current state and

that of the environment. Goal Management chooses from among the set of goals the ones that are

1 We ignore here the question of whether a given component, already developed and then incorporated ‘as is’ into the

system, should be considered as an agent or an object thereof. Similarly, we sidestep the question of whether agents

that are part of systems in the external environment, like those of autonomous manufacturing machines in the context

of the FFAV, should be considered agents or objects.

4

relevant to the current state, and Planning computes a plan to achieve the set of goals produced

by Goal Management, subject to state-dependent constraints. The plan is the agent’s action in

response to the current environment state, and may consist of a sequence of commands to be

executed by actuators.

The fifth function that characterizes autonomous behavior is Self-Adaptation, which caters for

dynamic adjustment over time of the system's goals and the goal management and planning

processes, through learning and reasoning, based on the evolving state of the system and its

environment.

2.3 Next Generation Autonomous Systems are Different

Next-generation autonomous systems, both those that are already beginning to emerge and

definitely those of the future, differ from existing systems in the several key aspects.

They have a large variety of possibly-conflicting system goals. A typical next generation

autonomous system will not be focused on a small number of well-defined goals, such as winning

a game of chess, or a vehicle reaching a destination without collisions. They will typically face a

far wider and more elaborate set of goals, as humans often do. Consider, the FFAV making a

highly critical (and expensive) delivery, which may be at risk due to a safety issue. The situation

is further complicated by the financial and legal considerations of its manufacturer.2 For example,

the owner of a chemical plan that uses an FFAV may want to allow the FFAV to (carefully) disobey

a stop sign when making a very urgent delivery, but the FFAV’s manufacturers might have

programmed it for absolute compliance with the law, in order to reduce their liability.

Their environment is dramatically less predictable. Even autonomous systems of the present

already have to deal with too many known environment configurations, and those we do not know

about yet will obviously add a whole new order of magnitude to this difficulty. First-cut

autonomous vehicles have to struggle with road-intersection topology, and varying traffic volume

and speed, which can probably be addressed using existing technology. In contrast, there are far

more complex issues, which humans handle routinely and which are still not adequately addressed.

For autonomous vehicles these include, e.g., the whims of bicycle and motorcycle riders weaving

in and out of traffic on roads, sidewalks, and crosswalks; police instructions, spoken or signaled;

poorly marked temporary diversions; emergencies that have not yet been handled by first

responders, such as a traffic accident, a landslide/rock-fall or flooding; or an urgent request by a

passenger to stop and step out, but where there is no safe place to do so. These kinds of difficulties

are caused by the increased dependency on hard-to-predict physical aspects of the dynamic

environment, compounded by the increased mobility, distribution, and sheer multitude of systems.

They require rich interaction with humans. Classical human-computer interaction (HCI) is

typically geared towards trained users or operators controlling automated tasks. Future interfaces

2 To some extent, the existence of multiple, possibly conflicting, goals reflects the transition from “weak AI” to “strong

AI”, which contrasts specific problem-solving with devising general decision methods for complex combinations of

goals. We believe that strong AI is not a prerequisite to trustworthy autonomous systems of the future: individual

systems will be able to solve complex issues without necessarily having at their disposal general strong AI solutions.

5

will have to deal with the overall behavior of the system as sensed by humans, with the way the

system affects human behavior and with the way humans think about system behavior. Next

generation autonomous systems will affect and put at risk a far wider circle of people, and will be

increasingly exposed to both helpful and adversarial human actions, with the required

communication and interaction that they necessitate. Suffices to think of a traffic jam caused by

an autonomous vehicle on a busy highway, an autonomous crane on a busy construction site in a

city center, or a medical-supply delivery robot, scurrying down a crowded hospital corridor.

The issue of interaction with humans goes much deeper than classical HCI. First, because future

systems will operate in common human environments, having to interface with humans who are

neither users nor operators, and over whom the owner of the autonomous system has no control.

Their behavior will not only have to be functional, efficient and safe, but will also have to appear

to be so, in order to instill in humans the confidence that this is indeed the case. These systems

will be interfacing with humans in wholly new ways even as part of normal everyday routines,

such as negotiating the right-of-way through an office door, or pointing out a spill on the floor to

a passing robotic cleaning assistant.

Second, the human-computer interface itself will have to be far more extensive than a mere display

and keyboard. It will encompass much of what the autonomous system understands and does. If

the FFAV has to hand a fragile package to a human, and take from them another package, how

does it communicate its readiness to hand over one and receive the other, its questions (e.g., has

the human recipient already secured a hold on the first package?), its state (e.g., that it is now

holding the second package safely so that the human’s hold and attention is no longer needed), and

so on.

Third, special attention has to be given to those parts of the interface that allow a human to interrupt

the operation of the autonomous system or change it abruptly. If a worker just dropped a contact

lens that the FFAV cannot see, how does he/she immediately stop it? If the FFAV was given the

wrong package, how does the human call it back? If some emergency work blocks the normal,

pre-programmed route of the FFAV, and a detour cannot be easily discovered, how does one give

the FFAV an alternate, ad-hoc instruction, in real time and in a natural way, that will cause it to

use a particular alternative route, say, the handicap ramp behind building C?

3 Why a New Foundation?

Our main claim in this paper is that developing trustworthy next-generation autonomous systems

requires addressing fundamental issues that have not been dealt with adequately by present

research or industrial experience. We call upon the research and engineering community to create

and evolve a foundation for developing such systems, which will recommend engineering practices

and methods, point at tools and technologies, and offer open-source bases and examples. It will

also include meta-information, such as reliable means for selecting among system design and

development alternatives. While this Autonomics foundation should touch upon all aspects of

system engineering, it should not aim at rewriting well-accepted system engineering principles.

Instead it should be built to address the ‘burning’ issues and propose ways to deal with them

throughout development.

6

The existence of gaps between the state of the art and achieving the desired trustworthiness has

been articulated, e.g., in Neumann [21] and Bellovin and Neumann [2], whose main focus is the

need to handle the impact of component vulnerability on full, composite system vulnerability. The

literature dedicated to building and testing complex, autonomous, safety-critical systems (e.g., [1])

provides precious little in way of theories and tools for ensuring one’s confidence (or trust) in the

system’s run-time behavior in face of unpredictable situations. In a closely related discussion of

the challenges facing next generation systems, Chang [5, 6] argues that new solutions, and indeed

a paradigm shift, are both required and possible, and that these can be enabled by new approaches

to situation analysis.

To reinforce our argument about the depth and urgency of the required foundation, we shall focus

here on one central aspect, which is at the very heart of autonomous system engineering – the

decision-making. We present three partially-overlapping challenges in developing decision-

making processes, for which satisfactory solutions have yet to come.

3.1 Challenge I: Specifying Behavior

Behavioral specification is needed in virtually all stages and activities of the development process:

requirements, design, simulation, testing, verification, and validation. Behavior should preferably

be specified in some rigorously defined language with agreed-upon dynamic semantics, but, at the

very least, can also be done in in a way that can be mapped directly to precise and technically-

oriented natural language descriptions. Although numerous diverse computer languages have been

developed for this purpose – procedural, declarative logic-based, scenario-based, and more – we

argue that in next-generation autonomous systems the very specification of desired, undesired, or

even actual observed behavior introduces new issues that call for extensive research. These include

means to specify individual goals and means to manage multiple goals and their inter-relationships.

When it comes to complex autonomous systems, the specification of even a simple single goal is

hard. Assume that, for the first time, an employer wants to completely automate the floor-cleaning

process. What kinds of specification are we after? Should it be action-oriented (e.g., where and

how to sweep), ‘object’-oriented (e.g., what kinds of dirt should be removed, and from where), or

result-oriented (e.g., what should the floors and shelves look like once the job is done)? How

should one tell developers (and the system) about the need to move small objects or unplug devices

that are in the way, or about dealing with such risks as breaking something?

We believe that what we need here are ways to describe the relevant “world” and its associated

behaviors. For this we propose to develop domain-specific ontologies of objects, properties,

actions and relations, extending current ontologies like the CYC project [16], Google’s Knowledge

Graph, the OWL web ontology language and others. The goal in this case is to answer simple

questions with simple answers. For example, if the FFAV sees in its path an object it cannot

recognize, it should be able to present a picture and perhaps sensor information to other facilities,

such as a server in the cloud. The server might then inform the FFAV as to what the object is, so

it can apply its existing rules, or it may instruct the FFAV to take certain actions based on the

server’s knowledge and logic.

In the context of autonomous systems, some progress along these lines can be found in, e.g., Traffic

Sequence Charts [9], USA NHTSA scenarios [20], Autoware software for AVs [13] and open

7

source simulators like CARLA [10]. Each of these uses its own terms and concepts as building

blocks in a bottom-up tool construction.

Beyond the issue of specifying single goals lies the extreme difficulty of specifying how the system

should balance, prioritize, or weigh several, often competing goals under a bewildering multitude

of circumstances. Even in a single given situation, and even if we allow the use of natural language

for specification, it is often almost impossible to state what the system should or should not do.

Many future generation autonomous systems will have to make complex decisions involving major

human and business risks, and we doubt that stakeholders can prescribe in advance what the system

should do in each case.

And, of course, in addition to such technical issues of specification, there are also weighty ethical

issues. Courts of law must rule on whether a decision made by a human was right or wrong,

negligent or not, in line with what is expected of a reasonable person. This becomes significantly

harder in the realm of autonomous systems, which, for example, have to determine where exactly

to make the initial incision during a surgical procedure, or decide in a split second between two

very bad alternatives in an emergency driving situation.

During simulations, stakeholders often encounter emergent properties and unexpected behaviors

that were not mentioned in the development process. For example, when observing the behavior

of an autonomous vehicle, such as an FFAV or a golf cart, one may notice that it sometimes repeats

a path with unusual precision, creating unexpected wear on the floor, ground or grass. New

requirements may be desired as a result, such as randomizing paths, documenting a limited set of

supported surfaces, or even taking advantage of this kind of predictability in other parts of the

system.

Making this happen is not easy. It is not even clear how to specify a formal version of a “trouble

ticket”, which describes an event, property or pattern that was noticed by the human observer but

was not part of the original specification. Furthermore, one would want to automate the detection

and articulation of emergent properties, since testing and simulation are likely to be highly

automated, with limited opportunity for human observation. For anticipated behavior (desired or

undesired), this would be quite similar to testing, but for unexpected behavior, automating the

capturing itself in a formal, yet succinct and intuitive way, would appear to be close to impossible.

In fact, we believe that Knuth's famous quote, “Beware of bugs in the above code; I have only

proved it correct, not tried it,” goes beyond recognizing the importance of testing given the

limitations of formal methods and correctness proofs. It can be used to support our belief that

testing is a must also because just observing the system in operation yields totally new insights

about what the system does and does not do, and what it should or should not do.

Explainability and interpretability are especially relevant to emergent properties, particularly for

neural nets and other ‘black-box’ solutions. In a way, explanations induce a model on the

seemingly model-less machine-learning solution. And here too, summarizing such execution

patterns automatically is a challenging problem that is the subject of active research.

The task of specifying and explaining behavior that must dynamically reconcile multiple goals can

be aided by initially adding weights, priorities, and mutual constraints to goals, as well as just

observing the system in operation and endowing the components responsible for the various goals

8

with dynamic internal negotiation capabilities. A key role will also be played by mechanisms for

specifying and handling contingent behavior, which reacts to and handles negative conditions

directly related to the system’s actual behavior. The ability to provide concise explanations of the

system’s decisions, both in real time and after the fact, will be of great value, allowing developers,

and the system itself, to judge the programmed decisions and adjust them as needed.

3.2 Challenge II: Analysis

By analysis we mean simulation, testing, formal verification, and system validation against

stakeholders’ tacit needs (STV&V for short). While these techniques will be of paramount

importance for next generation autonomous systems, it is well-known that none of them provide

complete assurances even for current systems, so they will have to be used in ways that

complement each other.

The various techniques comprising STV&V all involve one manner or another of executing a

system or a model thereof in a controlled fashion, and/or traversing or analyzing the resulting

states. Simulation is perhaps the most “hands on” of these, and facilitates observing emergent

behaviors – desired, undesired, and not-yet-specified – under a variety of conditions. However, the

simulated environment will always be an abstraction and simplification of reality. There are

numerous simulation tools relevant to autonomous vehicles; see, e.g., [4, 8, 11, 17]. While these

are effective and provide important features – albeit, spread across different tools – the foundation

proposed here calls for additional important capabilities, such as far greater user control over

environment variability and the ability to automatically detect and evaluate new emergent

properties that were not in the original test specifications.

One of the main reasons that satisfactory STV&V analysis calls for foundational work, is the vast

number of objects and variables involved in complex autonomous systems, and the even greater

number and intricacy of the interactions between them. This is what we now discuss.

Autonomous systems will typically have to deal with numerous new elements, which are often

ignored or simplified, or are controlled by other systems. Just think of an FFAV deployed at a busy

outdoor factory yard, with people, equipment, and vehicles moving around, possessing distinct

shapes, colors, reflection types, textures, sizes, locations, positioning and routes. Faithful

simulation and effective testing of these systems and environments is a formidable task. And as to

interactions thereof, here the problem becomes alarmingly worse. The system’s “intentional”

activities may be reasonably controlled, but the number and complexity of the possible interactions

and indirect effects between all objects in the environment and the system, are mind-boggling.

Consider testing a very small FFAV working its way through a throng of humans and machines,

perhaps even other living creatures – as in a livestock show. The interactions it has to deal with

are not limited to the obvious goals of, e.g., reaching a destination while avoiding collisions and

abiding by traffic laws. How about the interactions between objects that arise when the FFAV tries

to avoid splashing passersby when it crosses a puddle? How should it deal with cases where it

might inadvertently startle humans when quietly and suddenly showing up at their side, or when it

gets entangled in loose fabric or a cable?

Here too, we can list some of the issues that the Autonomics foundation should address regarding

analysis. One, which is a pre-condition to any kind of analysis, has to do with the modeling of

9

environments. We envision using domain-specific libraries for various kinds of systems and tasks,

in order to deal with the physical 3D space of real-world objects and their mobility. These libraries

will be different for different application areas. Just think of the different kinds of environments

that would be relevant to a medical system and a transportation system. The environment would

have to be modeled using languages and tools that are able to describe knowledge of the

environment and assumptions thereof, and to achieve a desired level of realism by controlling

abstraction levels and simulation granularity.

The second issue the foundation will have to address, which is particularly important for analysis,

involves the infrastructure needed for STV&V. We want to be able to test and simulate

autonomous agents in interaction with the complex cyber physical environment for which they are

being built. The infrastructure should be ‘state-aware’ and transparent, being able to communicate

with engineers using natural interfaces and logs that describe intuitively the state of the external

environment, the internal state of the system and its agents, and the state of agents’ perception of

the external environment. For example, assume you want to figure out what the FFAV will do

when it faces an obstacle consisting of two posts placed at a distance apart that is barely more than

the width of the FFAV. Will it move between them or bypass them? Standard testing and

simulation techniques call for actually placing the obstacles and observing the system’s behavior.

However, unless we also carefully check the feedback from the tested system as to what it ‘thinks’

it saw, one cannot be sure if it perceived the conditions as intended. Thus, the FFAV may indeed

pass between the posts, but for the wrong reason: it might have misclassified one or both of them.

Such perception control is a particular case of state awareness, where during STV&V the

infrastructure can report the system’s state and that of the environment; can guide the operation of

system components based on the states of others; and can report, and react to, things the system

does and does not do, its execution paths, etc. The complexity of all this is amplified by the

unpredictability of behavior. Even the relatively simple problem of determining which of the

agent’s states and interactions may occur in parallel with which others is extremely difficult.

The third major challenge of the analysis part of the foundation has to do with controlling and

measuring the behavioral coverage achieved via testing. Current testing methods for autonomous

systems focus on achieving simple kinds of coverage: do the scenarios being tested “touch” each

of the system’s elements (e.g., all its potential actions, methods and lines of code), and all of its

environment’s known conditions and events. Some simply take the vastness of the testing efforts

to be what counts: for example, makers of autonomous vehicles present the number of miles (real

and simulated) that their products have driven, as though merely testing them for significantly

more than what a typical driver would ever experience is sufficient (see, e.g., [17, 28]).

For the kinds of systems we have in mind, which will be deployed in large numbers worldwide,

these approaches are inadequate. Even what appears to be the bare minimum here – a practical

approach to measuring state coverage for both system and environment – is already hard enough.

We envision having to develop techniques to automatically generate rich sets of scenarios, subject

to criteria that can be external, i.e., from the environment and the real world, or internal, such as

intricate behavioral combinations of specification and implementation entities. Furthermore, given

the inability to exhaustively cover all run-time possibilities, we need support for accelerated

metamorphic testing in physical environments; i.e., checking thoroughly that the system behaves

correctly for a given scenario, and then quickly providing assurances for many other scenarios that

10

differ from the basic scenario only by small physical changes. We also need fitting criteria for

evaluating the testing process itself.

While tools like Generative Adversarial Networks (GAN) can discover (and help fixing) failures

in deep neural nets, much work is still needed to enable systematic confirmation that a given AI-

based autonomous system will handle a set of scenarios correctly with adequately high probability.

Finally, the Autonomics foundation will have to address formal verification. Even the best current

verification methods can be successfully used for only single components or greatly simplified

models of the entire system. Also, not only is the behavioral specification of the system itself very

hard, but it is no easier to specify the assertions that describe the behavior we want to verify in

terms that are readily aligned with the expectations of the human users and engineers. This is

further complicated by the fact that whether some behavior is desired or not may not by a binary

decision, but quantitative, residing on multiple scales[4].

Since many next generation autonomous systems will have components based on machine

learning, the formal verification of neural nets, and the ability to supply adequate explanations of

their internal behavior, will become increasingly important. These problems are long recognized

as being very difficult, and there is an emerging field of research around them, whose initial results

look very promising. Accordingly, the next section takes a closer look at the challenge involved in

incorporating such AI-based learning techniques into the foundation.

3.3 Challenge III: Combining ‘Model-Based’ and ‘Data-Driven’ Approaches

In the ensuing discussion we use the term model-based to include classical software

development approaches, all of which employ traditional programming languages and prescribe

step-by-step processes and/or rules that are meticulously handcrafted and organized by humans.

This also includes MDE techniques that use languages like the UMLK. However, we do not restrict

ourselves to MDE. We have decided to use the term model-based in order to emphasize the fact

that the designer is required to build and provide a thorough technical description (a model) of the

problem, its inputs, its outputs, and the required processing and behavior, in terms that are aligned

with the problem domain.

In contrast, we use the term data-driven to encompass all techniques that involve machine

learning (including, but not restricted to, deep neural networks), statistical analysis, pattern

recognition, and all related forms of computing in which the system’s behavior is derived from

supervised or unsupervised observation. The latter can include observing input and output events

and occurrences in the real world or in the processing of other systems, even that of earlier versions

of the system under development. The desired behavior of the system we are developing is thus

inferred; not prescribed as in model-based approaches.

There is a growing call to find ways to combine the two techniques, leveraging their relative

advantages to complement each other [12, 23, 19]. Nevertheless, there is still no agreement on

how to do this, the combination being very different from integration practices in classical

engineering. And, of course, due to the new challenges involved, the problem is further

exacerbated for next generation autonomous systems.

11

There are several differences between traditional software development and constructing solutions

based on ML, which must be taken into account when trying to integrate the two. To better

concentrate on the integration issue in this subsection, we disregard the still-open research

problems in each of them (like verification and explainability of neural nets).

The first difference involves the general life cycle. Traditional software engineering – in any of a

number of classical life cycle methodologies – calls for requirements elicitation and specification,

design, code, testing, and so on. In contrast, developing a module or system based on machine

learning involves totally different stages, such as the collection, validation and sampling of training

data, the actual training, evaluation, revision and retraining, etc.

The second difference concerns specifying requirements. Consider even very simple cases, such

as requiring that an electrical switch must turn off when the temperature reaches 80 degrees, or

that the brakes must be activated when a stationary obstacle is sensed and the stopping time at the

current speed is less than 1 second. These are well defined, and engineers can translate them easily

into working components, but for a system trained to handle excessive heat or avoid collision based

on positive and negative examples, it is not at all clear how to use the requirements or how to

incorporate them into the respective ML components.

Related to specifying requirements is the issue of after-the-fact explainability and

interpretability; i.e., the ability to describe what the system does, articulate the underlying

mechanisms it uses (algorithms, computations, etc.), and justify the decisions it makes. Despite

the remarkable success of neural nets in performing many kinds of tasks, their internal workings

are often a mystery. Current ideas addressing this problem are still a far cry from the situation with

traditional programming, for which engineering practices recommend producing code that is easy

to read and understand, and to enhance it with ample comments. Moreover, even if explainability

and interpretability tools are eventually able to extract the tacit rules behind the operation of large

neural nets, the way these rules relate to the net’s actual mechanisms will be very different from

the relation between natural language descriptions and source code in programming languages.

In addition, the difficulty in specifying the behavior of neural nets and explaining what they do

and why they do it, makes it very difficult to analyze their behavior. While some initial work has

been done on checking properties thereof (see, e.g., [14]), there is still much to be done on the

testing and verification of systems based on learning.

Another striking difference, closely related to the ones above, involves decomposability, which

is considered crucial in most stages of development. In model-based designs, most system artifacts

can be hierarchically decomposed into well understood functional and structural elements, the role

they play in the full system being more-or-less clear. In contrast, the design of data-based ML

solutions is typically accompanied by an end-to-end mindset – system-based or problem-based.

Being able to decompose a machine-learning solution into meaningful parts appears to be an

interesting challenge, which will, of course, bear upon explainability and verification.

Finally, we mention trustworthiness and certification, which are clearly related to testing and

verification. Many kinds of autonomous systems are highly critical – failure to meet their expected

behavior can be disastrous. Critical system design calls for providing the trustworthiness

guarantees required by the appropriate standards; e.g. DO178B for avionic systems and ISO 26262

for electronic components in the automotive industry. In principle, model-based techniques give

12

rise to predictability at design time, but components based on machine learning are not engineered

in the same way. Achieving for them an accepted level of trustworthiness and certification requires

wholly new technical solutions, since conventional testing and simulation techniques are wholly

inadequate given the complexity and unpredictability associated with next generation autonomous

systems. Complementary non-technical measures, such as risk management, the concept of

insurance, or the use of the justice system as deterrent against negligence, are separate issues

altogether and outside of the scope of this paper.

These significant differences illustrate the magnitude of the methodological and technical

integration challenge, which the Autonomics foundation will have to address. To give a relatively

straightforward example of this, consider a proposed system that is to ultimately consist of

conventional model-driven components (based, e.g., on an object model, algorithms, scenarios,

rules, and decision tables) and ML data-driven components (based, e.g., on neural nets). At some

point, the engineers will have to decide which sub-problems should be solved using which of the

two approaches. Sometimes the answer is easy: for example, reading traffic signs can be fully ML-

based, while the decision to remain below a known speed limit can be model based. Staying in

lane on a clean, well-marked highway might be model-based, while negotiating a road surface

covered with sand could very well be ML-based. However, in many cases, the choice between the

two approaches will be a lot more difficult. Besides, the means for deciding at runtime which

situation is the relevant one, in order to activate the proper component (e.g., whether the road

surface is clean or sandy), will also have to be developed, and which of the two approaches is to

be used for that decision also has to be decided by the designers..

The foundation should describe and discuss various specific approaches to the integration. One

example is a ‘pipeline’ approach, where some pre-processing is done by one method, and interim

results are passed on to the other method. In the ‘divide and conquer’ approach, the problem is

divided into sub-problems, and different techniques can be applied to each; the actual division can

itself be model-based or data-driven. In another approach, one method (usually rules) serves as a

‘protective wrapper’ around the other (usually ML-based), constraining the latter to be within some

decision domain. In additional variants, an approach that is mostly model-based can incorporate

several data-driven black boxes to enrich sensor processing or to solve particular sub-problems.

One can also apply both techniques to develop complete solutions, thus creating redundancy, and

then use various composition or ‘voting’ techniques to yield the final system behavior.

4 Discussion

Next-generation autonomous systems are imminent, and many of them will be manifest some

important form of criticality. They will have to cope with the uncertainty of complex,

unpredictable cyber physical environments, and will have to adapt to multiple, dynamically

changing and possibly conflicting goals. They will be expected to collaborate harmoniously with

humans, giving rise to so-called “symbiotic” autonomy. Their predicted advent reflects the

transition from “narrow” or “weak” AI to “strong” or “general” AI, which cannot be achieved by

using just conventional model-based techniques or machine learning alone. Thus, classical

software and systems engineering will have to be thoroughly enhanced.

Autonomous vehicles provide an emblematic topical case, illustrating the challenge. For example,

due to the difficulty in explicitly specifying and then checking compliance with the rules and

13

expectations that people may be concerned about, some public authorities allow self-certification

for autonomous vehicles, transferring the responsibility to the manufacturers. Another issue is

evidence. Manufacturers will often publicize only partial information about their testing, such as

the distance an autonomous vehicle has been test-driven. One can then only hope that the

behavioral coverage was indeed sufficient, and, that someone other than the manufacturer indeed

examined the tests and deemed them satisfactory. Another trust-related issue is the fact that critical

software can be updated regularly, which creates the hope that certain kinds of failures of an AV

would be immediately corrected in all AVs worldwide. However, this also raises the concern that

updates might be deployed with less-than-adequate testing, causing problems of more critical

impact than standard updates to the operating systems of smartphones or personal computers.

All this has generated lively public debates. Many important voices tend to minimize the risks

from the lack of rigorous design methods: Some claim that we should accept the risks because the

benefits will far outweigh them. Others accept the empirical methods and argue that rigorous

approaches to complex problems are inherently inadequate. Some people are overoptimistic,

arguing that we really do have the right tools, and it is just a matter of time. And besides all of this,

we must take into account all relevant ethical/moral, legal, social, and political issues, a vast topic

that is clearly outside the scope of this paper.

Our paper’s contribution is twofold. First, we propose a basic terminology for next generation

autonomous systems, and a framework capturing their main characteristics, and discuss how they

are different from present-day autonomous systems. The framework provides insight into the

spectrum of possibilities between automation and autonomy, and is intended to help in

understanding the degree of autonomy of a system as the division of work between a system and

human agents.

Second, we claim that the advent of next generation autonomous systems raises an extraordinary

scientific and technical challenge, and advocate the need for a new foundation that will address

the key open issues in their engineering. Such an Autonomics foundation will hopefully lead to

trustworthy hardware/software systems. The degree of success in meeting this challenge will

ultimately help determine the extent of acceptance of such systems, as a compromise between their

estimated trustworthiness, the anticipated benefits of the automation they afford, and the required

changes in other systems and in human behavior.

We anticipate that forming this foundation will require major and ground-breaking efforts in three

main directions.

The first is to develop a rigorous theory and supporting tools for dealing with heterogeneous

specifications. These should make it possible to characterize system behavior in a broad fashion,

including the behavior of its individual agents, as well as the system’s global behavior in terms of

its overall goals and its emergent properties.

The second direction is aimed at providing sufficient evidence of a system’s trustworthiness. We

have emphasized the paramount importance of modeling and simulation: we need faithful, realistic

modeling of behavior, as well as semantic awareness, so that the experimenter has access to a

meaningful abstraction of the system’s dynamics, allowing controllability and repeatability of the

testing. The latter will also allow behavioral coverage, where we measure the degree to which

relevant system configurations have been explored.

14

The third direction of the effort required for the foundation involves adopting a powerful “hybrid”

design approach, seeking tradeoffs between the trustworthiness of classical model-based

approaches and the performance of data-based ML ones. Taking better advantage of each approach

requires the development of common architectural frameworks that would integrate modules

characterized by their pure functionality independent of their design approach. Developing the

theory for decomposability, interoperability and explainability of data-based modules is essential

for reaching this goal.

In summary, we are at the beginning of a revolution, where machines are called upon to

progressively replace humans in their capacity for situation awareness and adaptive decision

making. This requires some aspects of general AI, which go beyond the objectives of ML-enabled

intelligence. The extent to which we will ultimately use and benefit from autonomous systems will

depend on how much we trust them, an issue which is the main reason for writing this paper.

Acknowledgements

The authors are grateful to Guy Katz and Orna Kupferman for valuable discussions, comments,

and suggestions. This work was supported in part by grants to David Harel, from the Israel Science

Foundation, Intel Corporation, , and the Estate of Emile Mimran, and from his endowed William

Sussman Professorial Chair of Mathematics at the Weizmann Institute.

References

[1] ACM. ACM Transactions on Autonomous and Adaptive Systems (TAAS). URL:

https://taas.acm.org/ Accessed 10/2019.

[2] Steven M Bellovin and Peter G Neumann. The big picture. Communications of the ACM,

61(11):24–26, 2018.

[3] Boston Dynamics. Boston Dynamics Spot Robot is Ready to Leave the Nest, 2019. URL:

https://www.youtube.com/watch?v=jEr1kRf_FC0 . Video accessed 10/2019.

[4] Patricia Bouyer, Orna Kupferman, Nicolas Markey, Bastien Maubert, Aniello Murano, and

Giuseppe Perelli. Reasoning about quality and fuzziness of strategic behaviours. arXiv preprint

arXiv:1905.11537, 2019.

[5] Carl K Chang. Situation analytics: a foundation for a new software engineering paradigm.

Computer, 49(1):24–33, 2016.

[6] Carl K Chang. Situation analytics—at the dawn of a new software engineering paradigm.

Science China Information Sciences, 61(5):050101, 2018.

[7] Autonomic Computing et al. An architectural blueprint for autonomic computing. IBM

White Paper, 31(2006):1–6, 2006. URL: https://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf Accessed

10/2019.

15

[8] Stuart Mason Dambrot, Derrick de Kerchove, Francesco Flammini, Witold Kinsner, Linda

MacDonald Glenn, and Roberto Saracco. Ieee symbiotic autonomous systems white paper ii, 2018.

[9] Werner Damm, Eike Möhlmann, Thomas Peikenkamp, and Astrid Rakow. A formal

semantics for traffic sequence charts. In Principles of Modeling, pages 182–205. Springer, 2018.

[10] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.

Carla: An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

[11] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for

autonomous agents. In International Workshop on Agent Theories, Architectures, and Languages,

pages 21–35. Springer, 1996.

[12] David Harel, Assaf Marron, Ariel Rosenfeld, Moshe Vardi, and Gera Weiss. Labor division

with movable walls: Composing executable specifications with machine learning and search (blue

sky idea). In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

9770–9774, 2019.

[13] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda, and

Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE Micro, 35(6):60–68, 2015.

[14] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:

An efficient smt solver for verifying deep neural networks. In International Conference on

Computer Aided Verification, pages 97–117. Springer, 2017.

[15] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu, editors.

Self-Aware Computing Systems. Springer, 2017.

[16] Douglas B Lenat. Cyc: A large-scale investment in knowledge infrastructure.

Communications of the ACM, 38(11):33–38, 1995.

[17] Waymo LLSC. JOURNEY. URL: https://waymo.com/journey/ . Accessed 10/2019.

[18] Michael Luck, Mark d’Inverno, et al. A formal framework for agency and autonomy. In

ICMAS, volume 95, pages 254–260, 1995.

[19] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The

neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural

supervision. arXiv preprint arXiv:1904.12584, 2019.

[20] Wassim G Najm, John D Smith, Mikio Yanagisawa, et al. Pre-crash scenario typology for

crash avoidance research. Technical report, United States. National Highway Traffic Safety

Administration, 2007.

[21] Peter G Neumann. How might we increase system trustworthiness? Communications of the

ACM, 62(10):23–25, 2019.

[22] Simone C Niquille. Regarding the Pain of SpotMini: Or What a Robot’s Struggle to Learn

Reveals about the Built Environment. Architectural Design, 89(1):84–91, 2019.

[23] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of safe

and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.

16

[24] Onn Shehory and Arnon Sturm. AGENT-ORIENTED SOFTWARE ENGINEERING.

Springer, 2016.

[25] Joseph Sifakis. Autonomous systems–an architectural characterization. In Models,

Languages, and Tools for Concurrent and Distributed Programming, pages 388–410. Springer,

2019.

[26] Joseph Sifakis. Can we trust autonomous systems? boundaries and risks. In International

Symposium on Automated Technology for Verification and Analysis (ATVA), pages 65–78.

Springer, 2019.

[27] Joseph Sifakis et al. Rigorous system design. Foundations and Trends in Electronic Design

Automation, 6(4):293–362, 2013.

[28] Venturebeat. Uber’s 250 autonomous cars have driven ’millions’ of miles and transported

‘tens of thousands’ of passengers. URL: https://venturebeat.com/2019/04/11/ubers-250-

autonomous-cars-have-driven-millions-of-miles-and-transported-tens-of-thousands-of-

passengers/ Accessed 10/2019.

	1 Introduction
	2 Next Generation Autonomous Systems
	2.1 Definitions
	2.2 Autonomous Behavior
	2.3 Next Generation Autonomous Systems are Different
	3 Why a New Foundation?
	3.1 Challenge I: Specifying Behavior
	3.2 Challenge II: Analysis
	3.3 Challenge III: Combining ‘Model-Based’ and ‘Data-Driven’ Approaches
	4 Discussion
	References

