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Abstract  

The potential benefits of autonomous systems are obvious. However, there are still major issues 

to be dealt with before developing such systems becomes a commonplace engineering practice, 

with accepted and trustworthy deliverables. We argue that a solid, evolving, publicly available, 

community-controlled foundation for developing next generation autonomous systems is a must, 

and term the desired foundation Autonomics. We focus on three main challenges: (i) how to specify 

autonomous system behavior in the face of unpredictability; (ii) how to carry out faithful analysis 

of system behavior with respect to rich environments that include humans, physical artifacts, and 

other systems; and (iii) how to build such systems by combining executable modeling techniques 

from software engineering with artificial intelligence and machine learning.  

1 Introduction  

Autonomous systems are already able to replace humans in carrying out a variety of functions. 

This trend will continue in the years to come, with autonomous systems becoming central and 

crucial to human society. They will be broadly prevalent, and will include, e.g., vehicles of all 

kinds, medical and industrial robots, agricultural and manufacturing facilities, and distributed 

management for traffic, urban security, and electric grids.  

Many organizations are already striving to develop the next wave of trustworthy, cost-effective 

autonomous systems, and researchers are busy building powerful tools and methods for the 

development process. However, the required trustworthiness is not achievable with current 

practices in software engineering and in artificial intelligence [26]. Extremely high levels of 

complexity and criticality present fundamental new challenges.  Consider, for example, even a 

very modest autonomous system, a valet-parking robot – obviously a far cry from a full 

autonomous vehicle. Customers and regulators would be fully justified in asking whether the robot 

will be able to discover a child forgotten in the car, or notice that a pet dog is perched underneath 

it. Even if it is able to notice these, what will the robot do as a result? How will it react if a human 

attempts to stop it by pursuing it and yelling?  

Such development challenges cannot be dealt with by merely enhancing the system's safety 

features, say, adding sensors and dedicated safety components, and carrying out richer test cases.  

Next-generation autonomous systems will be expected to operate under conditions that will often 

be unpredictable at the time of their development, due to limited control over the system’s 

environment, the dynamic emergence of new kinds of objects and events in the world, and the 

exponential growth in the number of composite configurations of such elements, old and new alike. 
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The literature contains interesting demos and discussions of unpredictability in autonomous 

systems; see, e.g., the SpotMini video [3] and the discussion of its demonstration environment 

[22].  Engineers must be able to assure customers and regulators that the system will function 

correctly and safely, even though many of the complex situations it might have to deal with are 

still unknown. 

We believe that to close this gap between the challenges in developing trustworthy next-generation 

autonomous systems and the present state of the art, the research and industry community must 

construct a common engineering foundation for developing such systems. This foundation, which 

we term Autonomics, should address the unique challenges presented by next generation 

autonomous systems, providing engineering principles, methods and tools for their satisfactory 

development, as well as means for selecting among multiple design alternatives. We believe that 

such a foundation will dramatically accelerate the deployment and acceptance of high quality, 

certifiable autonomous systems, built for the benefit of human society.  

2 Next Generation Autonomous Systems  

2.1 Definitions 

Over the years, many definitions have been offered for autonomy (e.g., [18, 11]). Autonomic 

Computing (e.g., [7]) focusses on systems capable of self-management, and in particular, 

automating dynamic configuration. The broad research area of multi-agent systems (e.g., [24]) 

pays special attention to the issue of combining local goals with collaboration rules and distributed 

algorithms to achieve system-wide overall goals. Autonomy is often associated with self-

awareness (e.g., [15]), which implies the system’s ability to perceive changes of the environment 

and use “knowledge” of its own states to react adequately, so that a set of goals is achieved. 

Symbiotic Computing (e.g., [8]) studies how autonomous systems can interface and collaborate 

with humans and with complex organizations, considering the many technical, commercial, and 

ethical implications thereof.  

In order to streamline the ensuing discussion, we offer, in this subsection and in the next one, 

definitions for some basic concepts (see also [25, 27]), and illustrate them with an example of an 

autonomous vehicle for factory-floor and plant yard deliveries (termed here FFAV).  

Systems are the artefacts that development teams are out to build. A system works within an 

external environment, and it consists of two types of components, agents and objects (the latter, as 

explained below, are typically not built by the development team), which, as we shall see, operate 

within a common internal system environment. The coordinated collective behavior of the system's 

agents and objects is designed to meet some global, system-wide goals. 

Objects are those components whose programmed behavior is not affected during system 

development. For example, objects of the FFAV system may include ready-made components, 

such as the motor, a set of cameras, or a steering mechanism whose input is, say, the desired angle 

of the front wheels. A system often interacts with objects that are not part of it, but are part of the 

environment. Such are, in the case of the FFAV, machines on the factory floor (which may be 

mere obstacles or recipients of deliveries), and packages to be delivered. Objects have states, 
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which can be changed by agents or by other objects, or can change ‘spontaneously’, for internal 

reasons.  

Agents are the main behavioral elements of an autonomous system. They are those designed 

(programmed, built) as part of the system’s development process.1 Agents have agency: they are 

proactive and pursue specific goals which may change dynamically. Agents can monitor objects 

from the internal and external environments and can change their states. They can also coordinate 

their own actions with other agents. Thus, the FFAV system may either have a single agent for all 

its functions, or separate agents for different tasks, such as work scheduling, route planning, travel 

control, gripping, and carrying. Agents can themselves be autonomous systems, and can, in turn, 

hierarchically contain other agents and systems. 

The internal environment is the lower-level physical and virtual infrastructure used by the 

system's agents and objects. It may include the computer/processor/memory, batteries and other 

power sources, the operating system, communication hardware and software, and data-base 

management software.  

The external environment of a system (often simply called the environment), is the collection 

of all entities with which the system might interact.  It may include other systems (with their objects 

and agents) and stand-alone objects, and any other physical or virtual entities that may affect, or 

be affected by, the system's behavior. 

2.2 Autonomous Behavior 

We say that a system or an agent (for simplicity, we shall stick to system below) manifests 

autonomous behavior if it embodies the following five behavioral functions, which are carried out 

with little or no intervention from humans or from other systems.  

Two functions are combined to enable the system to build for itself a useful representation of the 

state of the external environment. Perception is the function that inputs stimuli, interprets their 

basic meaning, and removes ambiguity, yielding relevant information. Often perception has to deal 

with multi-modal inputs, such as vision, sound, heat, touch, radar, and data communication from 

other systems, all obtained using mode-specific sensors and input devices, and has to then 

amalgamate the received information. The second function is Model Update, which uses the 

information provided by Perception to create and constantly update an integrated run-time model 

representing the system's environment and its states. This model will then be used in on-going 

decision making.  

Two other functions constitute the system’s adaptive decision process. This means that decisions 

consider many possibly conflicting goals, in a way that depends on the system’s current state and 

that of the environment. Goal Management chooses from among the set of goals the ones that are 

                                                 

1 We ignore here the question of whether a given component, already developed and then incorporated ‘as is’ into the 

system, should be considered as an agent or an object thereof. Similarly, we sidestep the question of whether agents 

that are part of systems in the external environment, like those of autonomous manufacturing machines in the context 

of the FFAV, should be considered agents or objects. 
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relevant to the current state, and Planning computes a plan to achieve the set of goals produced 

by Goal Management, subject to state-dependent constraints. The plan is the agent’s action in 

response to the current environment state, and may consist of a sequence of commands to be 

executed by actuators.  

The fifth function that characterizes autonomous behavior is Self-Adaptation, which caters for 

dynamic adjustment over time of the system's goals and the goal management and planning 

processes, through learning and reasoning, based on the evolving state of the system and its 

environment. 

2.3 Next Generation Autonomous Systems are Different  

Next-generation autonomous systems, both those that are already beginning to emerge and 

definitely those of the future, differ from existing systems in the several key aspects.    

They have a large variety of possibly-conflicting system goals.  A typical next generation 

autonomous system will not be focused on a small number of well-defined goals, such as winning 

a game of chess, or a vehicle reaching a destination without collisions. They will typically face a 

far wider and more elaborate set of goals, as humans often do. Consider, the FFAV making a 

highly critical (and expensive) delivery, which may be at risk due to a safety issue. The situation 

is further complicated by the financial and legal considerations of its manufacturer.2 For example, 

the owner of a chemical plan that uses an FFAV may want to allow the FFAV to (carefully) disobey 

a stop sign when making a very urgent delivery, but the FFAV’s manufacturers might have 

programmed it for absolute compliance with the law, in order to reduce their liability. 

Their environment is dramatically less predictable. Even autonomous systems of the present 

already have to deal with too many known environment configurations, and those we do not know 

about yet will obviously add a whole new order of magnitude to this difficulty. First-cut 

autonomous vehicles have to struggle with road-intersection topology, and varying traffic volume 

and speed, which can probably be addressed using existing technology. In contrast, there are far 

more complex issues, which humans handle routinely and which are still not adequately addressed.  

For autonomous vehicles these include, e.g., the whims of bicycle and motorcycle riders weaving 

in and out of traffic on roads, sidewalks, and crosswalks; police instructions, spoken or signaled; 

poorly marked temporary diversions; emergencies that have not yet been handled by first 

responders, such as a traffic accident, a landslide/rock-fall or flooding; or an urgent request by a 

passenger to stop and step out, but where there is no safe place to do so. These kinds of difficulties 

are caused by the increased dependency on hard-to-predict physical aspects of the dynamic 

environment, compounded by the increased mobility, distribution, and sheer multitude of systems. 

They require rich interaction with humans. Classical human-computer interaction (HCI) is 

typically geared towards trained users or operators controlling automated tasks. Future interfaces 

                                                 

2 To some extent, the existence of multiple, possibly conflicting, goals reflects the transition from “weak AI” to “strong 

AI”, which contrasts specific problem-solving with devising general decision methods for complex combinations of 

goals. We believe that strong AI is not a prerequisite to trustworthy autonomous systems of the future: individual 

systems will be able to solve complex issues without necessarily having at their disposal general strong AI solutions. 
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will have to deal with the overall behavior of the system as sensed by humans, with the way the 

system affects human behavior and with the way humans think about system behavior. Next 

generation autonomous systems will affect and put at risk a far wider circle of people, and will be 

increasingly exposed to both helpful and adversarial human actions, with the required 

communication and interaction that they necessitate. Suffices to think of a traffic jam caused by 

an autonomous vehicle on a busy highway, an autonomous crane on a busy construction site in a 

city center, or a medical-supply delivery robot, scurrying down a crowded hospital corridor.  

The issue of interaction with humans goes much deeper than classical HCI. First, because future 

systems will operate in common human environments, having to interface with humans who are 

neither users nor operators, and over whom the owner of the autonomous system has no control. 

Their behavior will not only have to be functional, efficient and safe, but will also have to appear 

to be so, in order to instill in humans the confidence that this is indeed the case. These systems 

will be interfacing with humans in wholly new ways even as part of normal everyday routines, 

such as negotiating the right-of-way through an office door, or pointing out a spill on the floor to 

a passing robotic cleaning assistant.  

Second, the human-computer interface itself will have to be far more extensive than a mere display 

and keyboard. It will encompass much of what the autonomous system understands and does. If 

the FFAV has to hand a fragile package to a human, and take from them another package, how 

does it communicate its readiness to hand over one and receive the other, its questions (e.g., has 

the human recipient already secured a hold on the first package?), its state (e.g., that it is now 

holding the second package safely so that the human’s hold and attention is no longer needed), and 

so on.  

Third, special attention has to be given to those parts of the interface that allow a human to interrupt 

the operation of the autonomous system or change it abruptly. If a worker just dropped a contact 

lens that the FFAV cannot see, how does he/she immediately stop it? If the FFAV was given the 

wrong package, how does the human call it back? If some emergency work blocks the normal, 

pre-programmed route of the FFAV, and a detour cannot be easily discovered, how does one give 

the FFAV an alternate, ad-hoc instruction, in real time and in a natural way, that will cause it to 

use a particular alternative route, say, the handicap ramp behind building C?    

3 Why a New Foundation? 

Our main claim in this paper is that developing trustworthy next-generation autonomous systems 

requires addressing fundamental issues that have not been dealt with adequately by present 

research or industrial experience. We call upon the research and engineering community to create 

and evolve a foundation for developing such systems, which will recommend engineering practices 

and methods, point at tools and technologies, and offer open-source bases and examples. It will 

also include meta-information, such as reliable means for selecting among system design and 

development alternatives.  While this Autonomics foundation should touch upon all aspects of 

system engineering, it should not aim at rewriting well-accepted system engineering principles. 

Instead it should be built to address the ‘burning’ issues and propose ways to deal with them 

throughout development. 
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The existence of gaps between the state of the art and achieving the desired trustworthiness has 

been articulated, e.g., in Neumann [21] and Bellovin and Neumann [2], whose main focus is the 

need to handle the impact of component vulnerability on full, composite system vulnerability. The 

literature dedicated to building and testing complex, autonomous, safety-critical systems (e.g.,  [1]) 

provides precious little in way of theories and tools for ensuring one’s confidence (or trust) in the 

system’s run-time behavior in face of unpredictable situations. In a closely related discussion of 

the challenges facing next generation systems, Chang [5, 6] argues that new solutions, and indeed 

a paradigm shift, are both required and possible, and that these can be enabled by new approaches 

to situation analysis. 

To reinforce our argument about the depth and urgency of the required foundation, we shall focus 

here on one central aspect, which is at the very heart of autonomous system engineering – the 

decision-making. We present three partially-overlapping challenges in developing decision-

making processes, for which satisfactory solutions have yet to come. 

3.1 Challenge I: Specifying Behavior 

Behavioral specification is needed in virtually all stages and activities of the development process: 

requirements, design, simulation, testing, verification, and validation. Behavior should preferably 

be specified in some rigorously defined language with agreed-upon dynamic semantics, but, at the 

very least, can also be done in in a way that can be mapped directly to precise and technically-

oriented natural language descriptions. Although numerous diverse computer languages have been 

developed for this purpose – procedural, declarative logic-based, scenario-based, and more – we 

argue that in next-generation autonomous systems the very specification of desired, undesired, or 

even actual observed behavior introduces new issues that call for extensive research. These include 

means to specify individual goals and means to manage multiple goals and their inter-relationships.    

When it comes to complex autonomous systems, the specification of even a simple single goal is 

hard. Assume that, for the first time, an employer wants to completely automate the floor-cleaning 

process. What kinds of specification are we after? Should it be action-oriented (e.g., where and 

how to sweep), ‘object’-oriented (e.g., what kinds of dirt should be removed, and from where), or 

result-oriented (e.g., what should the floors and shelves look like once the job is done)? How 

should one tell developers (and the system) about the need to move small objects or unplug devices 

that are in the way, or about dealing with such risks as breaking something?   

We believe that what we need here are ways to describe the relevant “world” and its associated 

behaviors. For this we propose to develop domain-specific ontologies of objects, properties, 

actions and relations, extending current ontologies like the CYC project [16], Google’s Knowledge 

Graph, the OWL web ontology language and others. The goal in this case is to answer simple 

questions with simple answers. For example, if the FFAV sees in its path an object it cannot 

recognize, it should be able to present a picture and perhaps sensor information to other facilities, 

such as a server in the cloud. The server might then inform the FFAV as to what the object is, so 

it can apply its existing rules, or it may instruct the FFAV to take certain actions based on the 

server’s knowledge and logic.  

In the context of autonomous systems, some progress along these lines can be found in, e.g., Traffic 

Sequence Charts [9], USA NHTSA scenarios [20], Autoware software for AVs [13] and open 
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source simulators like CARLA [10]. Each of these uses its own terms and concepts as building 

blocks in a bottom-up tool construction.  

Beyond the issue of specifying single goals lies the extreme difficulty of specifying how the system 

should balance, prioritize, or weigh several, often competing goals under a bewildering multitude 

of circumstances. Even in a single given situation, and even if we allow the use of natural language 

for specification, it is often almost impossible to state what the system should or should not do. 

Many future generation autonomous systems will have to make complex decisions involving major 

human and business risks, and we doubt that stakeholders can prescribe in advance what the system 

should do in each case.  

And, of course, in addition to such technical issues of specification, there are also weighty ethical 

issues. Courts of law must rule on whether a decision made by a human was right or wrong, 

negligent or not, in line with what is expected of a reasonable person. This becomes significantly 

harder in the realm of autonomous systems, which, for example, have to determine where exactly 

to make the initial incision during a surgical procedure, or decide in a split second between two 

very bad alternatives in an emergency driving situation.  

 

During simulations, stakeholders often encounter emergent properties and unexpected behaviors 

that were not mentioned in the development process.  For example, when observing the behavior 

of an autonomous vehicle, such as an FFAV or a golf cart, one may notice that it sometimes repeats 

a path with unusual precision, creating unexpected wear on the floor, ground or grass. New 

requirements may be desired as a result, such as randomizing paths, documenting a limited set of 

supported surfaces, or even taking advantage of this kind of predictability in other parts of the 

system.  

Making this happen is not easy. It is not even clear how to specify a formal version of a “trouble 

ticket”, which describes an event, property or pattern that was noticed by the human observer but 

was not part of the original specification. Furthermore, one would want to automate the detection 

and articulation of emergent properties, since testing and simulation are likely to be highly 

automated, with limited opportunity for human observation. For anticipated behavior (desired or 

undesired), this would be quite similar to testing, but for unexpected behavior, automating the 

capturing itself in a formal, yet succinct and intuitive way, would appear to be close to impossible. 

In fact, we believe that Knuth's famous quote, “Beware of bugs in the above code; I have only 

proved it correct, not tried it,” goes beyond recognizing the importance of testing given the 

limitations of formal methods and correctness proofs. It can be used to support our belief that 

testing is a must also because just observing the system in operation yields totally new insights 

about what the system does and does not do, and what it should or should not do.   

 

Explainability and interpretability are especially relevant to emergent properties, particularly for 

neural nets and other ‘black-box’ solutions. In a way, explanations induce a model on the 

seemingly model-less machine-learning solution. And here too, summarizing such execution 

patterns automatically is a challenging problem that is the subject of active research. 

The task of specifying and explaining behavior that must dynamically reconcile multiple goals can 

be aided by initially adding weights, priorities, and mutual constraints to goals, as well as just 

observing the system in operation and endowing the components responsible for the various goals 



 

8 

 

with dynamic internal negotiation capabilities. A key role will also be played by mechanisms for 

specifying and handling contingent behavior, which reacts to and handles negative conditions 

directly related to the system’s actual behavior. The ability to provide concise explanations of the 

system’s decisions, both in real time and after the fact, will be of great value, allowing developers, 

and the system itself, to judge the programmed decisions and adjust them as needed. 

3.2 Challenge II: Analysis 

By analysis we mean simulation, testing, formal verification, and system validation against 

stakeholders’ tacit needs (STV&V for short). While these techniques will be of paramount 

importance for next generation autonomous systems, it is well-known that none of them provide 

complete assurances even for current systems, so they will have to be used in ways that 

complement each other.   

The various techniques comprising STV&V all involve one manner or another of executing a 

system or a model thereof in a controlled fashion, and/or traversing or analyzing the resulting 

states. Simulation is perhaps the most “hands on” of these, and facilitates observing emergent 

behaviors – desired, undesired, and not-yet-specified – under a variety of conditions. However, the 

simulated environment will always be an abstraction and simplification of reality. There are 

numerous simulation tools relevant to autonomous vehicles; see, e.g., [4, 8, 11, 17]. While these 

are effective and provide important features – albeit, spread across different tools – the foundation 

proposed here calls for additional important capabilities, such as far greater user control over 

environment variability and the ability to automatically detect and evaluate new emergent  

properties that were not in the original test specifications.   

One of the main reasons that satisfactory STV&V analysis calls for foundational work, is the vast 

number of objects and variables involved in complex autonomous systems, and the even greater 

number and intricacy of the interactions between them. This is what we now discuss. 

Autonomous systems will typically have to deal with numerous new elements, which are often 

ignored or simplified, or are controlled by other systems. Just think of an FFAV deployed at a busy 

outdoor factory yard, with people, equipment, and vehicles moving around, possessing distinct 

shapes, colors, reflection types, textures, sizes, locations, positioning and routes. Faithful 

simulation and effective testing of these systems and environments is a formidable task. And as to 

interactions thereof, here the problem becomes alarmingly worse. The system’s “intentional” 

activities may be reasonably controlled, but the number and complexity of the possible interactions 

and indirect effects between all objects in the environment and the system, are mind-boggling. 

Consider testing a very small FFAV working its way through a throng of humans and machines, 

perhaps even other living creatures – as in a livestock show. The interactions it has to deal with 

are not limited to the obvious goals of, e.g., reaching a destination while avoiding collisions and 

abiding by traffic laws. How about the interactions between objects that arise when the FFAV tries 

to avoid splashing passersby when it crosses a puddle? How should it deal with cases where it 

might inadvertently startle humans when quietly and suddenly showing up at their side, or when it 

gets entangled in loose fabric or a cable?  

Here too, we can list some of the issues that the Autonomics foundation should address regarding 

analysis. One, which is a pre-condition to any kind of analysis, has to do with the modeling of 
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environments. We envision using domain-specific libraries for various kinds of systems and tasks, 

in order to deal with the physical 3D space of real-world objects and their mobility. These libraries 

will be different for different application areas. Just think of the different kinds of environments 

that would be relevant to a medical system and a transportation system. The environment would 

have to be modeled using languages and tools that are able to describe knowledge of the 

environment and assumptions thereof, and to achieve a desired level of realism by controlling 

abstraction levels and simulation granularity. 

The second issue the foundation will have to address, which is particularly important for analysis, 

involves the infrastructure needed for STV&V. We want to be able to test and simulate 

autonomous agents in interaction with the complex cyber physical environment for which they are 

being built. The infrastructure should be ‘state-aware’ and transparent, being able to communicate 

with engineers using natural interfaces and logs that describe intuitively the state of the external 

environment, the internal state of the system and its agents, and the state of agents’ perception of 

the external environment.  For example, assume you want to figure out what the FFAV will do 

when it faces an obstacle consisting of two posts placed at a distance apart that is barely more than 

the width of the FFAV. Will it move between them or bypass them? Standard testing and 

simulation techniques call for actually placing the obstacles and observing the system’s behavior. 

However, unless we also carefully check the feedback from the tested system as to what it ‘thinks’ 

it saw, one cannot be sure if it perceived the conditions as intended. Thus, the FFAV may indeed 

pass between the posts, but for the wrong reason: it might have misclassified one or both of them.

   

Such perception control is a particular case of state awareness, where during STV&V the 

infrastructure can report the system’s state and that of the environment; can guide the operation of 

system components based on the states of others; and can report, and react to, things the system 

does and does not do, its execution paths, etc. The complexity of all this is amplified by the 

unpredictability of behavior. Even the relatively simple problem of determining which of the 

agent’s states and interactions may occur in parallel with which others is extremely difficult.  

The third major challenge of the analysis part of the foundation has to do with controlling and 

measuring the behavioral coverage achieved via testing. Current testing methods for autonomous 

systems focus on achieving simple kinds of coverage: do the scenarios being tested “touch” each 

of the system’s elements (e.g., all its potential actions, methods and lines of code), and all of its 

environment’s known conditions and events. Some simply take the vastness of the testing efforts 

to be what counts: for example, makers of autonomous vehicles present the number of miles (real 

and simulated) that their products have driven, as though merely testing them for significantly 

more than what a typical driver would ever experience is sufficient (see, e.g., [17, 28]).  

For the kinds of systems we have in mind, which will be deployed in large numbers worldwide, 

these approaches are inadequate. Even what appears to be the bare minimum here – a practical 

approach to measuring state coverage for both system and environment – is already hard enough. 

We envision having to develop techniques to automatically generate rich sets of scenarios, subject 

to criteria that can be external, i.e., from the environment and the real world, or internal, such as 

intricate behavioral combinations of specification and implementation entities. Furthermore, given 

the inability to exhaustively cover all run-time possibilities, we need support for accelerated 

metamorphic testing in physical environments; i.e., checking thoroughly that the system behaves 

correctly for a given scenario, and then quickly providing assurances for many other scenarios that 
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differ from the basic scenario only by small physical changes. We also need fitting criteria for 

evaluating the testing process itself. 

While tools like Generative Adversarial Networks (GAN) can discover (and help fixing) failures 

in deep neural nets, much work is still needed to enable systematic confirmation that a given AI-

based autonomous system will handle a set of scenarios correctly with adequately high probability. 

Finally, the Autonomics foundation will have to address formal verification. Even the best current 

verification methods can be successfully used for only single components or greatly simplified 

models of the entire system. Also, not only is the behavioral specification of the system itself very 

hard, but it is no easier to specify the assertions that describe the behavior we want to verify in 

terms that are readily aligned with the expectations of the human users and engineers. This is 

further complicated by the fact that whether some behavior is desired or not may not by a binary 

decision, but quantitative, residing on multiple scales[4].  

Since many next generation autonomous systems will have components based on machine 

learning, the formal verification of neural nets, and the ability to supply adequate explanations of 

their internal behavior, will become increasingly important. These problems are long recognized 

as being very difficult, and there is an emerging field of research around them, whose initial results 

look very promising. Accordingly, the next section takes a closer look at the challenge involved in 

incorporating such AI-based learning techniques into the foundation.  

3.3 Challenge III: Combining ‘Model-Based’ and ‘Data-Driven’ Approaches 

In the ensuing discussion we use the term model-based to include classical software 

development approaches, all of which employ traditional programming languages and prescribe 

step-by-step processes and/or rules that are meticulously handcrafted and organized by humans. 

This also includes MDE techniques that use languages like the UMLK. However, we do not restrict 

ourselves to MDE. We have decided to use the term model-based in order to emphasize the fact 

that the designer is required to build and provide a thorough technical description (a model) of the 

problem, its inputs, its outputs, and the required processing and behavior, in terms that are aligned 

with the problem domain.  

In contrast, we use the term data-driven to encompass all techniques that involve machine 

learning (including, but not restricted to, deep neural networks), statistical analysis, pattern 

recognition, and all related forms of computing in which the system’s behavior is derived from 

supervised or unsupervised observation. The latter can include observing input and output events 

and occurrences in the real world or in the processing of other systems, even that of earlier versions 

of the system under development. The desired behavior of the system we are developing is thus 

inferred; not prescribed as in model-based approaches.  

There is a growing call to find ways to combine the two techniques, leveraging their relative 

advantages to complement each other [12, 23, 19].  Nevertheless, there is still no agreement on 

how to do this, the combination being very different from integration practices in classical 

engineering. And, of course, due to the new challenges involved, the problem is further 

exacerbated for next generation autonomous systems.  
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There are several differences between traditional software development and constructing solutions 

based on ML, which must be taken into account when trying to integrate the two. To better 

concentrate on the integration issue in this subsection, we disregard the still-open research 

problems in each of them (like verification and explainability of neural nets). 

The first difference involves the general life cycle. Traditional software engineering – in any of a 

number of classical life cycle methodologies – calls for requirements elicitation and specification, 

design, code, testing, and so on. In contrast, developing a module or system based on machine 

learning involves totally different stages, such as the collection, validation and sampling of training 

data, the actual training, evaluation, revision and retraining, etc. 

The second difference concerns specifying requirements. Consider even very simple cases, such 

as requiring that an electrical switch must turn off when the temperature reaches 80 degrees, or 

that the brakes must be activated when a stationary obstacle is sensed and the stopping time at the 

current speed is less than 1 second. These are well defined, and engineers can translate them easily 

into working components, but for a system trained to handle excessive heat or avoid collision based 

on positive and negative examples, it is not at all clear how to use the requirements or how to 

incorporate them into the respective ML components. 

Related to specifying requirements is the issue of after-the-fact explainability and 

interpretability; i.e., the ability to describe what the system does, articulate the underlying 

mechanisms it uses (algorithms, computations, etc.), and justify the decisions it makes. Despite 

the remarkable success of neural nets in performing many kinds of tasks, their internal workings 

are often a mystery. Current ideas addressing this problem are still a far cry from the situation with 

traditional programming, for which engineering practices recommend producing code that is easy 

to read and understand, and to enhance it with ample comments. Moreover, even if explainability 

and interpretability tools are eventually able to extract the tacit rules behind the operation of large 

neural nets, the way these rules relate to the net’s actual mechanisms will be very different from 

the relation between natural language descriptions and source code in programming languages.   

In addition, the difficulty in specifying the behavior of neural nets and explaining what they do 

and why they do it, makes it very difficult to analyze their behavior. While some initial work has 

been done on checking properties thereof (see, e.g., [14]), there is still much to be done on the 

testing and verification of systems based on learning. 

Another striking difference, closely related to the ones above, involves decomposability, which 

is considered crucial in most stages of development. In model-based designs, most system artifacts 

can be hierarchically decomposed into well understood functional and structural elements, the role 

they play in the full system being more-or-less clear. In contrast, the design of data-based ML 

solutions is typically accompanied by an end-to-end mindset – system-based or problem-based. 

Being able to decompose a machine-learning solution into meaningful parts appears to be an 

interesting challenge, which will, of course, bear upon explainability and verification. 

Finally, we mention trustworthiness and certification, which are clearly related to testing and 

verification. Many kinds of autonomous systems are highly critical  – failure to meet their expected 

behavior can be disastrous. Critical system design calls for providing the trustworthiness 

guarantees required by the appropriate standards; e.g. DO178B for avionic systems and ISO 26262 

for electronic components in the automotive industry. In principle, model-based techniques give 
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rise to predictability at design time, but components based on machine learning are not engineered 

in the same way. Achieving for them an accepted level of trustworthiness and certification requires 

wholly new technical solutions, since conventional testing and simulation techniques are wholly 

inadequate given the complexity and unpredictability associated with next generation autonomous 

systems. Complementary non-technical measures, such as risk management, the concept of 

insurance, or the use of the justice system as deterrent against negligence, are separate issues 

altogether and outside of the scope of this paper.  

These significant differences illustrate the magnitude of the methodological and technical 

integration challenge, which the Autonomics foundation will have to address. To give a relatively 

straightforward example of this, consider a proposed system that is to ultimately consist of 

conventional model-driven components (based, e.g., on an object model, algorithms, scenarios, 

rules, and decision tables) and ML data-driven components (based, e.g., on neural nets). At some 

point, the engineers will have to decide which sub-problems should be solved using which of the 

two approaches. Sometimes the answer is easy: for example, reading traffic signs can be fully ML-

based, while the decision to remain below a known speed limit can be model based. Staying in 

lane on a clean, well-marked highway might be model-based, while negotiating a road surface 

covered with sand could very well be ML-based. However, in many cases, the choice between the 

two approaches will be a lot more difficult. Besides, the means for deciding at runtime which 

situation is the relevant one, in order to activate the proper component (e.g., whether the road 

surface is clean or sandy), will also have to be developed, and which of the two approaches is to 

be used for that decision also has to be decided by the designers..   

The foundation should describe and discuss various specific approaches to the integration. One 

example is a ‘pipeline’ approach, where some pre-processing is done by one method, and interim 

results are passed on to the other method. In the ‘divide and conquer’ approach, the problem is 

divided into sub-problems, and different techniques can be applied to each; the actual division can 

itself be model-based or data-driven. In another approach, one method (usually rules) serves as a 

‘protective wrapper’ around the other (usually ML-based), constraining the latter to be within some 

decision domain. In additional variants, an approach that is mostly model-based can incorporate 

several data-driven black boxes to enrich sensor processing or to solve particular sub-problems. 

One can also apply both techniques to develop complete solutions, thus creating redundancy, and 

then use various composition or ‘voting’ techniques to yield the final system behavior.  

4 Discussion 

Next-generation autonomous systems are imminent, and many of them will be manifest some 

important form of criticality. They will have to cope with the uncertainty of complex, 

unpredictable cyber physical environments, and will have to adapt to multiple, dynamically 

changing and possibly conflicting goals. They will be expected to collaborate harmoniously with 

humans, giving rise to so-called “symbiotic” autonomy. Their predicted advent reflects the 

transition from “narrow” or “weak” AI to “strong” or “general” AI, which cannot be achieved by 

using just conventional model-based techniques or machine learning alone. Thus, classical 

software and systems engineering will have to be thoroughly enhanced.  

Autonomous vehicles provide an emblematic topical case, illustrating the challenge. For example, 

due to the difficulty in explicitly specifying and then checking compliance with the rules and 
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expectations that people may be concerned about, some public authorities allow self-certification 

for autonomous vehicles, transferring the responsibility to the manufacturers. Another issue is 

evidence. Manufacturers will often publicize only partial information about their testing, such as 

the distance an autonomous vehicle has been test-driven. One can then only hope that the 

behavioral coverage was indeed sufficient, and, that someone other than the manufacturer indeed 

examined the tests and deemed them satisfactory. Another trust-related issue is the fact that critical 

software can be updated regularly, which creates the hope that certain kinds of failures of an AV 

would be immediately corrected in all AVs worldwide. However, this also raises the concern that 

updates might be deployed with less-than-adequate testing, causing problems of more critical 

impact than standard updates to the operating systems of smartphones or personal computers.  

All this has generated lively public debates. Many important voices tend to minimize the risks 

from the lack of rigorous design methods: Some claim that we should accept the risks because the 

benefits will far outweigh them. Others accept the empirical methods and argue that rigorous 

approaches to complex problems are inherently inadequate. Some people are overoptimistic, 

arguing that we really do have the right tools, and it is just a matter of time. And besides all of this, 

we must take into account all relevant ethical/moral, legal, social, and political issues, a vast topic 

that is clearly outside the scope of this paper.  

Our paper’s contribution is twofold. First, we propose a basic terminology for next generation 

autonomous systems, and a framework capturing their main characteristics, and discuss how they 

are different from present-day autonomous systems. The framework provides insight into the 

spectrum of possibilities between automation and autonomy, and is intended to help in 

understanding the degree of autonomy of a system as the division of work between a system and 

human agents.  

Second, we claim that the advent of next generation autonomous systems raises an extraordinary 

scientific and technical challenge, and advocate the need for a new foundation that will address 

the key open issues in their engineering. Such an Autonomics foundation will hopefully lead to 

trustworthy hardware/software systems. The degree of success in meeting this challenge will 

ultimately help determine the extent of acceptance of such systems, as a compromise between their 

estimated trustworthiness, the anticipated benefits of the automation they afford, and the required 

changes in other systems and in human behavior. 

We anticipate that forming this foundation will require major and ground-breaking efforts in three 

main directions.  

The first is to develop a rigorous theory and supporting tools for dealing with heterogeneous 

specifications. These should make it possible to characterize system behavior in a broad fashion, 

including the behavior of its individual agents, as well as the system’s global behavior in terms of 

its overall goals and its emergent properties. 

The second direction is aimed at providing sufficient evidence of a system’s trustworthiness. We 

have emphasized the paramount importance of modeling and simulation: we need faithful, realistic 

modeling of behavior, as well as semantic awareness, so that the experimenter has access to a 

meaningful abstraction of the system’s dynamics, allowing controllability and repeatability of the 

testing. The latter will also allow behavioral coverage, where we measure the degree to which 

relevant system configurations have been explored.  
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The third direction of the effort required for the foundation involves adopting a powerful “hybrid” 

design approach, seeking tradeoffs between the trustworthiness of classical model-based 

approaches and the performance of data-based ML ones. Taking better advantage of each approach 

requires the development of common architectural frameworks that would integrate modules 

characterized by their pure functionality independent of their design approach. Developing the 

theory for decomposability, interoperability and explainability of data-based modules is essential 

for reaching this goal.  

In summary, we are at the beginning of a revolution, where machines are called upon to 

progressively replace humans in their capacity for situation awareness and adaptive decision 

making. This requires some aspects of general AI, which go beyond the objectives of ML-enabled 

intelligence. The extent to which we will ultimately use and benefit from autonomous systems will 

depend on how much we trust them, an issue which is the main reason for writing this paper. 
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