
Runtime Safety Assurance for Learning-enabled Control of
Autonomous Driving Vehicles

Shengduo Chen1, Yaowei Sun1, Dachuan Li1,2,∗, Qiang Wang2, Qi Hao1,2,∗ and Joseph Sifakis2

Abstract— Providing safety guarantees for Autonomous Ve-
hicle (AV) systems with machine-learning based controllers
remains a challenging issue. In this work, we propose Simplex-
Drive, a framework that can achieve runtime safety assurance
for machine-learning enabled controllers of AVs. The proposed
Simplex-Drive consists of an unverified Deep Reinforcement
Learning (DRL)-based advanced controller (AC) that achieves
desirable performance in complex scenarios, a Velocity-Obstacle
(VO) based baseline safe controller (BC) with provably safety
guarantees, and a verified mode management unit that monitors
the operation status and switches the control authority between
AC and BC based on safety-related conditions. We provide a
formal correctness proof of Simplex-Drive and conduct a lane-
changing case study in dense traffic scenarios. The simulation
experiment results demonstrate that Simplex-Drive can always
ensure the operation safety without sacrificing control perfor-
mance, even if the DRL policy may lead to deviations from the
safe status.

I. INTRODUCTION
As higher levels of autonomy and intelligence of Au-

tonomous Vehicles (AV) are demanded, there is a growing
trend of utilizing data-driven machine-learning (ML) tech-
niques (e,g, Deep Reinforcement Learning, DRL) in AV
systems, due to their model-free flexibility and experience
learning capabilities. The machine-learning based approaches
can achieve superior performance in the control of systems
with complex dynamics in dynamic environments.

However, the integration of ML components in the system
control framework poses a significant challenge to the safety
verification of AV systems. The black-box nature of ML
units and lack of explicit logic explainability, prevent using
conventional formal verification methods at the design time.
The control policies of ML units are derived from the
training dataset, hence their safety assurance are implicitly
determined by the training data. However, there are no
applicable metrics and approaches for the validation and
verification of datasets, and hence data-driven component.
As a result, the lack of safety assurance prohibits the massive
application of ML techniques in safety-critical AV systems.

To address the above challenge, in this paper we seek
to leverage the runtime assurance approach and propose

This work is supported by the Shenzhen Fundamental Research Program
(No: JCYJ20200109141622964)

1S. Chen, Y. Wei, D. Li, Q. Hao are with Department of Com-
puter Science and Engineering, Southern University of Science and Tech-
nology, 518055 Shenzhen, China {11860006, sunyw, lidc3
}@mail.sustech.edu.cn, haoq@sustech.edu.cn

2D. Li, Q. Wang Q. Hao and J. Sifakis are with Research In-
stitute for Trustworthy Autonomous Systems, 518055 Shenzhen, China
wangq8@sustech.edu.cn, joseph.sifakis@imag.fr

*Corresponding authors: Dachuan Li, Qi Hao. S. Chen, Y. Sun and Q.
Wang contributed equally to this work

a Simplex-Drive framework for the control of AVs. The
framework is built upon the basic Simplex architecture [1],
[2], where the system keeps track of its status at run time,
and if necessary, switches the control authority from an
unverified performance controller to a proved safe controller
to guarantee the runtime safety. When the safe controller
is in control, we further incorporate a verified mechanism
to enable Simplex-Drive to switch the authority back to the
performance controller if safe states can be recovered, so as
to restore control performance. In this manner, the system
can incorporate ML-based components without requiring
correct-by-construction properties at the design stage, while
still ensuring provable safety of the overall composite system
at run time. Taking the advantage of the Simplex-Drive
architecture, this study focuses on the runtime assurance
design of Reinforcement Learning-enabled AV controllers
with applications to lane-changing scenarios. The primary
contributions of this paper are as follows:
• Development of the novel Simplex-Drive architecture

for the control of AVs, which can provide provable
runtime safety assurance for control systems containing
data-driven components.

• Development of a control module with runtime assur-
ance for lane-changing control of AVs, which consists
of an unverified DRL-based performance controller
and a verified Optimal Reciprocal Collision Avoidance
(ORCA, [3]) based safe controller. We provide formal
safety specifications for lane-changing control tasks and
a set of formal proofs of the correctness of the overall
framework.

• Demonstration of the advantages of Simplex-Drive
through comparative evaluations based on a number
of simulated lane-changing scenarios. The open-source
code of Simplex-Drive is available at:
https://github.com/625160928/Safety RL VO.

The remainder of the paper is organized as follows:
Section II reviews the related work. Details of the proposed
Simplex-Drive framework are presented in Section III, fol-
lowed by experimental results and analyses in Section IV.
The paper is concluded in Section V.

II. RELATED WORK
The integration of deep reinforcement learning (DRL) into

AV applications have been drawing a lot of attention in
recent years. Taking advantages of DRL, AVs can efficiently
derive control policies and achieve better performance than
traditional methods that rely on explicit system models and
pre-designed logic [4] [5] [6] [7] [8] [9]. Specifically, a

ar
X

iv
:2

10
9.

13
44

6v
1 

 [
cs

.R
O

] 
 2

8 
Se

p 
20

21

https://github.com/625160928/Safety_RL_VO


modified Q function approximator [10] is utilized to generate
continuous lateral acceleration actions for AVs from the
continuous state space [4]. However, the proposed method
has been applied to a simple situation assuming that other
vehicles only have the longitudinal actions and never change
their lanes. For the longitudinal control, a pre-defined Intel-
ligent Driver Model (IDM) has been developed to generate
acceleration actions. The later work [11] also uses a neural
network to approximate the Q function which can generate
continuous actions for longitudinal control. When a lane
change decision is make, the network generates actions to
adjust longitudinal distances and then a fifth degree polyno-
mial curve is executed to achieve a complete lane change. To
control the AV along both lateral and longitudinal directions
at the same time, an Asynchronous Learning strategy (A3C)
[12] is developed with a network architecture of three con-
volutional layers and one fully connected layer to generate
control actions for AV in race driving [5]. However, such
a network can only handle the discrete action space which
may result in poor smoothness in trajectories. Other DRL
algorithms have also been applied to control AV for lane-
change and lane-merge scenarios [6], [7] and [13]. However,
none of these approaches can provide theoretical proofs of
the safety assurance of generated actions.

The idea of leveraging runtime assurance to address the
safety issue of complex and unverified controllers was ini-
tially proposed in [1]. The proposed Simplex architecture
has been widely adopted in many safety-critical applications
such as flight control systems [14], drone surveillance sys-
tems [15], collision avoidance of mobile robots [16] and
automatic aircraft taxiing control systems [17]. Such domain
applications lead to extensions of Simplex focusing on the
design of the safety verification/monitoring mechanism and
switching logic. The original Simplex leverages Lyapunov
based approaches, which can only be applied to continu-
ous systems. Therefore, [18], [19] utilize a set of hybrid
automaton and reachability analysis techniques to design
the Simplex switching logic for hybrid systems. However,
previous Simplex-based frameworks do not focus on any
specific controllers and treat all unverified components as
black boxes. Moreover, the lack of a reverse switch mecha-
nism prevents the system from restoring control performance.
Recently, the Neural Simplex architecture [20] has been pro-
posed to incorporate RL-based components to the Simplex
framework, along with a bi-directional switch logic. Inspired
by Neural Simplex, we provide runtime assurance for an AV
control framework with a DRL-based performance controller
in this study.

III. SIMPLEX-DRIVE FRAMEWORK WITH
RUNTIME ASSURANCE

A. Overview of Simplex-Drive framework

The overall Simplex-Drive framework is illustrated in
Fig. 1. The framework consists of three major components:
namely the Advanced performance controller (AC), the
Baseline safe controller (BC) and the Mode management
unit(MM).

Fig. 1: The system diagram of the proposed Simplex-Drive
framework for the machine learning based autonomous ve-
hicle control with safety assurance. AC is used to achieve
desired performance and BC for safety assurance. MM
monitors the operation condition and switches between these
two control authorities.

The dynamics of the controlled vehicle is given by st+1 =
f(st, ut), where st ∈ S and ut ∈ U denote the sate and
control at time step t, respectively. We denote with CMt ∈
{AC,BC} as the control mode determined by MM unit at
time step t, where AC,BC indicate the AC (BC) controller
has the control authority, respectively. Let uACt , uBCt be the
control control output of AC and BC controller.

The AC is data-driven and maps the current sate into a
control action: uACt+1 = πACθ (st). In this study, AC can be
obtained by training the DRL policy. In contrast, the BC
(uBCt+1 = πBC(st)) is required to be designed with provable
safety guarantee. In the case study of this paper, we design
a BC based on the ORCA principle [3], which is proven
to preserve collision avoidance property. The MM monitors
the state st at runtime and switches control authority from
AC to BC if uACt will lead the system to an unrecoverable
state (i.e. a state where the system cannot guarantee safety
property) at some time step in the future. When CMt = BC,
the MM can also switches the mode back to AC to resume
AC control if the system returns to a recoverable state. Both
MM and BC are proven to guarantee safety properties, while
AC is not required to be verified correct-by-construction.

B. The Deep Reinforcement Learning Controller

For lane-change scenarios, the process of generating vehi-
cle control commands can be formulated as a Markov Deci-
sion Process (MDP) < S,A, P, r, S, γ >. We use the terms
“state” to describe the status of the surrounding environment,
which can be observed by the agent. Without loss of gen-
erality, we assume a continuous action space a ∈ A for the
agent. Let πθ(a|s) be the policy distribution with learnable
parameters θ, and P (st+1|st, at) the transition probability
that measures how likely the environment transitions to st+1

given an action by at ∼ πθ(|st). After the transition to st+1,
the agent receives a discounted reward r(st, at, st+1). The
γirt+i is the discounted return. The objective of the DRL is
to solve the above MDP by learning a policy that maximizes
the expected total discounted rewards.



Fig. 2: The network architecture of the proposed deep
reinforcement learning based controller. The first two MLP
layers are used for environment representation; the multi-
head attention layer is used for focusing on nearest vehicles;
the last two MLP layers are used for policy formulation.

1) The Network Architecture: To design the lane-changing
control approach in autonomous driving applications, we
develop a model-free policy with a multi-head attention
network [21] to map the state to continuous actions. The
input states consisting of the position, velocity and heading
information of the ego vehicle are fed into two fully-
connected layers multi-layer perceptron (MLP) network with
128 neurons and Relu activation functions. The states of
surrounding vehicles (which consists of same elements as
the ego-vehicle) are sent to another MLP network with the
same architecture. Then the concatenated features are sent to
a multi-head attention module followed by another MLP with
2 fully connected layers that have 256 neurons. We build
the multi-head attention network based on the framework
proposed by [21]. The output layer has two units with tanh
activation functions that output the throttle and yaw control
commands as actions. The overall network architecture is
shown in Fig. 2. The policy is trained under the Actor-Critics
scheme.

2) Design of DRL-based Controller: The reward settings
for training the DRL algorithm are set as follows. Reaching
the target lane and pose keeping are encouraged by positive
rewards, while hazardous behaviors such as collisions and
violations of lane borders are penalized by negative rewards.
To take the advantage of the DRL-based controller to con-
trol the AV more efficiently, we incorporate an additional
efficiency-related reward term r1 and r3 to encourage the
agent to complete lane-changing in a time-efficient manner.
The ego vehicle receives r1 when reaching the target lane
and r2 when collision occurs. r4, r5 are the rewards used to
constrain the the vehicle heading.

C. The Optimal Reciprocal Collision Avoidance-based Safe
Controller

The Optimal Reciprocal Collision Avoidance (ORCA) [3]
approach was originally proposed for multi-robot collision

(a) (b)

(c) (d)

Fig. 3: The Proposed ORCA-Drive safe controller. (a) The
reachable velocity set VB and velocity obstacle set V OτA|B
for the ego vehicle A at the origin and the obstacle vehicle
B denoted by a rectangle. (b) The resultant velocity obstacle
area V OτA|B for the ego vehicle A at the origin within
a period of ∆t. The computation of the optimal velocity
increment dv for the ego vehicle at the origin given (c) a
single obstacle vehicle and (d) multiple obstacle vehicles,
respectively.

avoidance and it has been theoretically proved to be able
to preserve the safety property. Therefore, we utilize the
ORCA as the baseline safe controller in our system to
guarantee safety. Since the ORCA is originally designed for
omni-directional robot, we extend the ORCA to the control
of Ackermann dynamic vehicles. As shown in Fig. 3 (a),
surrounding vehicles related to the ego-vehicle movements
are regarded as obstacles. Considering the ego vehicle as
A with velocity vA and obstacle as B with vB , we firstly
calculate the velocity reachable set of the obstacle VB , where
the upper bound and lower bounds are calculated with the
maximum acceleration a in a predicted time interval ∆t.
The left and right bounds are calculated with the maximum
steering angle and the rB is the minimum steering radius
of the obstacle vehicle with the Ackermann dynamic model.
V OτA|B is the velocity obstacle for ego vehicle induced by B
for a time window τ with the current relative velocity w.r.t
the obstacle vehicle (in a typical AV system configuration,
velocities of surrounding vehicles can be measured using
onboard sensors such as radars). P is the relative position
between the ego and obstacle vehicles; τ is set to 2 in our
configuration; r is the radius of the minimum bounding circle
of the vehicle.

With the velocity obstacle area V OτA|B at the current
relative obstacle vehicle speed, it is able to generated the
velocity obstacle area for a period of ∆t in the future by



calculating the Minkowski Sum V OτA|B
⊕
VB , as shown in

Fig. 3 (b). According to the original ORCA algorithm, the
optimal velocity to avoid collision is generated by adding
minimal velocity change dv to the current ego vehicle
velocity vA. In order to address the Ackermann vehicle
model constraints, the actions of the ego vehicle should also
satisfy the vehicle kinematic constraints. Therefore, we also
calculate the velocity reachable set VA of the ego vehicle.
Then the generated velocity vopt = vA + dv is checked to
make sure it is within VA. The action generation processes
of single and multiple obstacle vehicles are illustrated in
Fig. 3 (c) and the Fig. 3 (d) respectively. Details of the
extended ORCA (namely ORCA-Drive) algorithm are shown
in Algorithm 1.

Algorithm 1 ORCA-Drive Safe Controller

1: for Every prediction period t do
2: Initialize the ORCA plane list L
3: for each vehicle i ∈ other vehicles do
4: Calculate the velocity reachable set V ti for vehicle

i.
5: Calculate VO area V OtA|i for ego-vehicle A.
6: Calculate Minkowski Sum CAtA|i(V

t
i ) =

V ti
⊕
V OtA|i.

7: Calculate minimal velocity change dVi that adjust
current velocity VA to leave CAtA|i(V

t
i ).

8: Generate the ORCA plane Pi = [Li, dVi] and store
Pi in L.

9: end for
10: Generate velocity reachable set VA of the ego vehicle

under kinematic constraint.
11: Generate Safe velocity set Us of the ego vehicle with

ORCA plane list L.
12: Calculate the optimal velocity set Uopt = UA∩Us and

get optimal velocity change dVopt.
13: if Uopt = ∅ then
14: for each sampled Un ∈ UA do
15: Calculate weight Wn += Worca× distance dorca

to ORCA plane for all plane.
16: Calculate weight Wn += Wcurrent× distance

dcurrent to current speed.
17: end for
18: Vopt is the Un with highest weight.
19: else
20: Get the optimal speed with Vopt = Vcurrent+dVopt.
21: end if
22: end for

D. Switching logic

The safety property during operation can be formulated
as a safe set: φsafet ⊆ S , indicating the set of vehicle’s
states that satisfies safety properties (i.e. safe spacing, traffic
rule obedience). At runtime, the system is required to always
stay within φsafe. We define an additional recoverable region
φrec:

Definition. 1 (recoverable region): The recoverable region
is the set of states s ∈ φrec that satisfy the following
properties:
(1) R(s,AC,∆t) ⊆ φsafe; (2) R(s,BC,∞) ⊆ φsafe; (3)
R(R(s,AC,∆t),BC,∞) ⊆ φsafe;
where R(s0,MC,∆t) indicates the reachable sets of the
vehicle’s sates within a time interval ∆t under control mode
MC, starting from a initial state s0. Therefore, φrec indicates
a region from which the BC can always steer the system to
safe region φsafe no matter which controller is in charge.

The switching logic of the MM unit can be modeled as a
finite-state automaton with two control locations (Fig. ): AC
and BC, indicating the AC or BC is in control, respectively.
The switching condition is given by:

CMt+∆t =

 BC CMt = AC ∧R(st,AC, k∆t) * φsafe
AC CMt = BC ∧ st ∈ φrec
CMt otherwise

(1)
In our application, the MM unit checks the sate of the system
and makes decisions every ∆t. We use bounded reachability
analysis [22] to predict the set of vehicle’s reachable states
and check for deviation from the safe region (line 1, Eq. 1).

E. Runtime Assurance of Simplex-Drive

The correctness of the overall Simplex-Drive can be ver-
ified by the following theorem:
Theorem 1:Denoting R(s0) as the set of reachable states
from s0, then ∀s ∈ R(s0), the following invariant holds:

(MC = BC∧ s ∈ φsafe)∨ (MC = AC∧R(s,AC,∆t) ⊆
φsafe)

if the following conditions hold:
(1) s0 ∈ φsafe;
(2) ∆t > TAC ∧∆t > TBC ;
(3) R(φsafe,BC,∞) ⊆ φsafe;
(4) R(φrec,AC, k∆t) ⊆ φsafe, k ∈ N, k > 1

where TAC and TBC denote the control interval of AC
and BC.

Proof. Suppose the invariant holds at time step t, the
theorem is proved by induction on every consecutive interval
of the MM unit:
(1) If MCt = BC and there is no mode switch, all future
states satisfy the invariant according to condition (3) of
Theorem 1;
(2) If MCt = BC and BC → AC at time t, this implies
st ∈ φrec. According to condition (4), R(st,AC, k∆t) ⊆
φsafe, k > 1, and the invariant holds for the next interval;
(3) If MCt = AC and there is no mode switch, this implies
R(st,AC, k∆t) ⊆ φsafe ⇒ R(st+∆t,AC,∆t) ⊆ φsafe for
the next time interval
(4) If MCt = AC and AC → BC at time t, this
implies R(st,AC, k∆t) * φsafe. However, as we have
R(st−∆t,AC, 2∆t) ⊆ φsafe (since MCt 6= AC otherwise)
⇒ R(st,AC,∆t) ⊆ φsafe. According to condition (2),
the BC will execute at least once during the next interval.
Therefore, we have R(st,BC,∞) ⊆ φsafe according to
condition (3) and thus the invariant holds. �



TABLE I: A PERFORMANCE COMPARISON BETWEEN THE PROPOSED SIMPLEX-DRIVE APPROACH AND
OTHER METHODS

Density = 1 (vehicle/lane) Target Lane Rate Collision Rate Avg Speed (m/s) Min Dis (m) Avg Min Dis (m)
ORCA—Drive 90% 0 17.44 19.22 24.80

AVO 63% 35% 18.96 5.35 12.73
Attention PPO 97% 27% 19.44 8.19 16.31
DQN & IDM 100% 36% 19.87 7.55 10.87

Simplex-Drive(Ours) 95% 0 19.36 19.17 21.32
Density = 1.5 (vehicle/lane) Target Lane Rate Collision Rate Avg Speed (m/s) Min Dis (m) Avg Min Dis (m)

ORCA—Drive 77% 0 14.96 10.62 20.52
AVO 33% 72% 18.31 4.74 10.70

Attention PPO 92% 73% 19.44 5.32 12.35
DQN & IDM 100% 95% 19.73 4.55 8.87

Simplex-Drive(Ours) 89% 0 17.91 10.22 19.36
Density = 2 (vehicle/lane) Target Lane Rate Collision Rate Avg Speed (m/s) Min Dis (m) Avg Min Dis (m)

ORCA—Drive 56% 0 15.27 8.30 14.09
AVO 30% 94% 17.66 4.56 8.70

Attention PPO 87% 83% 19.44 5.32 12.35
DQN & IDM 100% 100% 19.76 3.95 6.81

Simplex-Drive(Ours) 85% 0 17.80 7.23 15.78

It is proved in [3] that the ORCA-based BC controller can
guarantee safety properties. Therefore, Theorem. 1 guaran-
tees that if the specified conditions hold, all reachable states
of the vehicle system always stay within the safe region, no
matter which mode the system is currently in.

IV. EXPERIMENT RESULTS

To evaluate the effectiveness and performance of the pro-
posed Simplex-Drive control framework, we conducted ex-
tensive experiments in the highway-env simulation environ-
ment [23] with different levels of complexity and operation
conditions.

A. Experiment Setup

We developed a simulated environment based on highway-
env simulator [23] for the training of the DRL-based AC.
Various experiments are also conducted using this simulated
environment to verify the effectiveness and safety of our
framework. In the experiments, we focus on dense traffic
scenarios with 3 lanes (the lane width are assumed to be
fixed). The controlled ego vehicle (with initial speed Vego)
and the obstacle vehicles (with initial speed Vother) are
assumed to have the same size.

B. Comparative experiments

We compared the proposed architecture with standalone
ORCA-Drive controller, AVO controller [24], Attention PPO
controller as well as a controller with DQN and IDM [13]
in scenarios with different degrees of complexity. The AVO
controller utilizes acceleration-velocity obstacle that extend
the VO with acceleration constraints to calculate the velocity
policy. The DQN with an IDM controller operates within a
similar multi-level framework but utilizes DQN to generate
high-level decisions and utilize the IDM module for vehicle
control. We compared the performance of these approaches
in terms of safety and efficiency-related metrics.

The configurations of parameters used in the experiments
are shown in TABLE II.

TABLE II: PARAMETER SETTINGS FOR SIMULATIONS

Term Value Term Value
Vehicle Length 5.0m Vehicle Width 2.0m
Vmax 20m/s Vother 15m/s
Maxstep 200 Vego 20m/s
accelerationego [-5 m/s2, 5 m/s2] Steeringego [-π/6,π/6]
λ1 -0.2 λ2 0.2
r1 2 r2 -5
r3 vcurrent − vtarget r4 cos(θ)
Vtarget 20 r5 -2
Lane width 2.5m ∆t 0.5s
Worca 0.7 Wcurrent 0.3

C. Evaluation Metrics

The evaluation metrics used in the experiments include the
target lane rate and collision rate, indicating whether the ego
vehicle reaches the target lane before the epoch ends and
whether the maneuver results in collisions, respectively. The
Avg Speed is the average vehicle speed at each time step
which indicates the efficiency of lane-changing control. In
addition, we utilize the minimal distance (Min Dis) to other
vehicles and its average during the epoch (Avg Min Dis) to
demonstrate the degree of conservativeness of the controllers.
We use the vehicle density metric to define the complexity of
the environment and the traffic density. The vehicle density
is defined as the average number of vehicles on each lane in
the near distance. We test the controllers with scenarios with
densities of 1, 1.5 and 2. Each density level is tested for 50
times and the results are averaged.
D. Simulation Results

The simulation results are shown in TABLE I. It can be
seen that the ORCA-Drive safe controller can always guaran-
tee the safety with 0 collision during all the experiment trials.
Compared with DQN and IDM-based controllers that gen-
erate continuous control, the Attention PPO controller can



Fig. 4: An illustration of the maneuvers of the ego-vehicle using the Simplex-Drive and ORCA control policies respectively
in the presence of traffic accidents. (a) The snap shots of the poses of the ego, crashed, normal vehicles, marked by yellow,
red, and blue colors, using the proposed Simplex-Drive controller. (b) ORCA regions of the environment for the Simplex-
Drive controller, where the obstacle vehicles and ORCA planes are represented by red circles and green lines respectively.
(c) The snap shots of the poses of ego, crashed, and normal vehicles using the AVO controller for the same scenario as a
comparison.
deal with the congested environment with better performance
and maintain larger minimal spacing to surrounding vehicles.
As expected, although the controller with DQN and IDM
can achieve smoother trajectories, the lag between the high-
level decision module and low-level control module result
in delays when reacting to contingencies. The ORCA-Drive
safe controller normally keeps a relative larger distance from
other vehicles, compared with other controllers, and such
a conservative policy generated by ORCA-Drive controller
results in a relatively low average speed. In contrast, the
proposed Simplex-Drive architecture (with ORCA as BC
and attention PPO as AC) can achieve higher success rates
while maintaining desirable driving efficiency. In addition, it
can also be noticed that the proposed Simplex-Drive control
architecture can deal with unexpected cases that do not occur
in the DRL training process. Fig. 4 illustrates an example
scenario where crashed vehicles block the lane on which
the ego-vehicle is driving. In this scenario, the proposed
Simplex-Drive controller identifies potential unsafe states
and switches to the ORCA-Drive safe control mode and thus
avoids collision with crashed vehicles.

To further verify the safety of our switching logic, we
conduct another experiment to simulate the circumstance
that AC loses control. In such scenario, we use a ’dummy’
controller as AC which can only output constant acceleration
actions (The ORCA-Drive controller is still used as BC).
We evaluate the switches between the controllers and the
ratio of the two control modes’ (AC and BC) active time
among the overall operation time. During the experiment,
the ratio of active time of BC increase from 23% to 35%

when ’dummy’ controller performed slow acceleration action
and from 51% to 58% when ’dummy’ controller performed
aggressive action. The results show that the ratio of BC
controller’s active time increases as the the acceleration and
traffic density grows, indicating that the switching logic can
effectively predict potential unsafe states and take over the
AC controller to ensure safety, while avoiding unnecessary
frequent switching to maintain the control performance.

V. CONCLUSION

In this paper, we have proposed Simplex-Drive, a rein-
forcement learning based control framework that can provide
runtime safety assurance for autonomous vehicles. We have
provided a set of formal proofs for the framework which can
preserve safety properties all the time. Within the framework,
the RL performance controller can help achieve superior
control outputs; the ORCA safe controller can guarantee the
drive safe conditions in challenging scenarios; the manage-
ment unit can achieve smooth switching between two control
modes. Simulation experiment results demonstrate that the
proposed control system can provide safety guarantee with-
out sacrificing control performance in terms of lane change
success rate, lane change speed and trajectory smoothness
in typical challenging autonomous driving scenarios. The
proposed Simplex-Drive framework can be extended to var-
ious data-driven or model-based controllers, and serve as an
attempt to develop a more general paradigm for building
trustworthy AV systems. Our future work will focus on the
implementation and validation of the proposed approach on
physical vehicle platforms in real-world scenarios.



REFERENCES

[1] L. Sha et al., “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, 2001.

[2] U. Mehmood, S. Bak, S. A. Smolka, and S. D. Stoller, “Safe cps from
unsafe controllers,” arXiv preprint arXiv:2102.12981, 2021.

[3] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[4] P. Wang, C. Chan, and A. D. L. Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” 2018 IEEE
Intelligent Vehicles Symposium (IV), pp. 1379–1384, 2018.

[5] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2070–2075, 2018.

[6] P. Wolf, C. Hubschneider, M. Weber, A. Bauer, J. Härtl, F. Durr, and
J. M. Zöllner, “Learning how to drive in a real world simulation with
deep q-networks,” 2017 IEEE Intelligent Vehicles Symposium (IV), pp.
244–250, 2017.

[7] P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt, and J. M. Zöllner, “Adaptive
behavior generation for autonomous driving using deep reinforcement
learning with compact semantic states,” 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 993–1000, 2018.

[8] J. Duan, S. E. Li, Y. Guan, Q. Sun, and B. Cheng, “Hierarchical rein-
forcement learning for self-driving decision-making without reliance
on labeled driving data,” ArXiv, vol. abs/2001.09816, 2020.

[9] Y. Chen, C. Dong, P. Palanisamy, P. Mudalige, K. Muelling, and
J. Dolan, “Attention-based hierarchical deep reinforcement learning
for lane change behaviors in autonomous driving,” 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3697–3703, 2019.

[10] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous
deep q-learning with model-based acceleration,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 2829–2838. [Online]. Available:
https://proceedings.mlr.press/v48/gu16.html

[11] T. Shi, P. Wang, X. Cheng, C. Chan, and D. Huang, “Driving
decision and control for automated lane change behavior based on
deep reinforcement learning,” 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 2895–2900, 2019.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[13] M. Toromanoff, É. Wirbel, and F. Moutarde, “End-to-end model-free
reinforcement learning for urban driving using implicit affordances,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 7151–7160, 2020.

[14] J. D. Schierman, M. D. DeVore, N. D. Richards, N. Gandhi, J. K.
Cooper, K. R. Horneman, S. Stoller, and S. Smolka, “Runtime
assurance framework development for highly adaptive flight control
systems,” Barron Associates, Inc. Charlottesville, Tech. Rep., 2015.

[15] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari,
“Soter: a runtime assurance framework for programming safe robotics
systems,” in 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2019, pp. 138–150.

[16] D. Phan, J. Yang, R. Grosu, S. A. Smolka, and S. D. Stoller, “Collision
avoidance for mobile robots with limited sensing and limited infor-
mation about moving obstacles,” Formal Methods in System Design,
vol. 51, no. 1, pp. 62–86, 2017.

[17] D. Cofer, I. Amundson, R. Sattigeri, A. Passi, C. Boggs, E. Smith,
L. Gilham, T. Byun, and S. Rayadurgam, “Run-time assurance for
learning-based aircraft taxiing,” in 2020 AIAA/IEEE 39th Digital
Avionics Systems Conference (DASC). IEEE, 2020, pp. 1–9.

[18] S. Bak, A. Greer, and S. Mitra, “Hybrid cyberphysical system verifi-
cation with simplex using discrete abstractions,” in 2010 16th IEEE
Real-Time and Embedded Technology and Applications Symposium.
IEEE, 2010, pp. 143–152.

[19] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reacha-
bility for verified simplex design,” in 2014 IEEE Real-Time Systems
Symposium. IEEE, 2014, pp. 138–148.

[20] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and
S. D. Stoller, “Neural simplex architecture,” in NASA Formal Methods
Symposium. Springer, 2020, pp. 97–114.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[22] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable ver-
ification of hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 379–395.

[23] E. Leurent, “An environment for autonomous driving decision-
making,” https://github.com/eleurent/highway-env, 2018.

[24] J. van den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in 2011
IEEE International Conference on Robotics and Automation, 2011,
pp. 3475–3482.

https://proceedings.mlr.press/v48/gu16.html
https://github.com/eleurent/highway-env

	I INTRODUCTION
	II RELATED WORK
	III SIMPLEX-DRIVE FRAMEWORK WITH RUNTIME ASSURANCE
	III-A Overview of Simplex-Drive framework
	III-B The Deep Reinforcement Learning Controller
	III-B.1 The Network Architecture
	III-B.2 Design of DRL-based Controller

	III-C The Optimal Reciprocal Collision Avoidance-based Safe Controller
	III-D Switching logic
	III-E Runtime Assurance of Simplex-Drive

	IV EXPERIMENT RESULTS
	IV-A Experiment Setup
	IV-B Comparative experiments
	IV-C Evaluation Metrics
	IV-D Simulation Results

	V CONCLUSION
	References

