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Abstract. Autonomous Driving Systems (ADS) are critical dynamic 
reconfigurable agent systems whose specification and validation raises 
extremely challenging problema. The paper presents a multilevel seman­
tic framework for the specification of ADS and discusses associated val­
idation problems. The framework relies on a formal definition of maps 
modeling the physical environment in which vehicles evolve. Maps are 
directed metric graphs whose nodes represent positions and edges rep­
resent segments of roads. We study basic properties of maps includ­
ing their geometric consistency. Furthermore, we study position refine­
ment and segment abstraction relations allowing multilevel representa­
tion from purely topological to detailed geometric. We progressively de­
:fine first order logics for modeling familles of maps and distributions of 
vehicles over maps. These are Configuration Logics, which in addition 
to the usual logical connectives are equipped with a coalescing operator 
to build configurations of models. We study their semantics and basic 
properties. We illustrate their use for the specification of traffic rules and 
scenarios characterizing sequences of scenes. We study various aspects of 
the validation problem including run-time veri.fication and satisfiability 
of specifications. Finally, we show links of our framework with practical 
validation needs for ADS and advocate its adequacy for addressing the 
many fa.cets of this challenge. 

Keywords: autonomous driving system, map modeling, configuration logic, 
traffic rule specification, scene and scenario description, runtime verification, 
simulation and validation in the large 

1 Introduction 

The validation of ADS ra.ises challenges far beyond the current state of the art 
because of their overwhelming complexity and the integration of non-explainable 
AI components. Providing suffi.dent evidence that these systems are safe enough 
is a hot and critical need, given the underlying economic and societal stakes. 
This objective mobilizes considerable investments and efforts by key players 
including big tech campa.nies and car manufacturers. The efforts focus on the 
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development of efficient simulation technology and common infrastructure for 
modelling the physical environment of ADS and their desired properties. They 
led in particular to the defüùtion of common formats such as OpenDRJVE [1,2] 
for the description ofroacl networks, and OpenSCENARJO [3] for the description 
of complex, synchronized maneuvers that involve multiple entities like vehicles, 
pedestrians and other traffic participants. Additionally, several open simulation 
environments such as CARLA [10] and LGSVL [26] are available for modelling 
and validation. 

As a rule, existing industrial simulation environments are built on top of game 
engines. They privilege realism of modeling but allow poor semantic awareness. 
Simulation tools are not rooted in rigorous semantics that could provide a basis 
for analysis and reasmùng about mode! properties. For instance, they provide no 
support to check that a map obtained by composition of road components e.g. 
using OpenDRJVE in CARLA, is consistent with its geometric interpretation. 
Furthermore, Jack of semantic awareness makes impossible the development of 
convincing technical arguments regarding the safety of the simulated systems. 
Accident-free simulation even for billions of nùles is not a conclusive safety evi­
dence if it is not possible to explain how simulated miles are related to real miles. 
Obviously, any techrùcally sound safety evaluation should be model-based and 
this is not possible under the current state of the art. 

The paper proposes a semantic framework for the specification and validation 
of ADS. The framework provides a precise semantic mode! of the environment 
of ADS based on maps. It also includes logics for the specification and validation 
of properties of the semantic mode! and of the system dynanùc behavior. 

Maps have been the object of numerous studies focusing on the formalization 
of the concept and its use for the analysis of ADS. A key research issue is to avoid 
monolithlc representations and build maps by composition of components and 
heterogeneous data. This motivated formalizations using ontologies and logics 
with associated reasoning mechanisms to check consistency of descriptions and 
their correctness with respect to desired properties [6,4] or to generate scenarios 
[4,8]. Other works propose open source map frameworks for hlghly automated 
driving [1,2,22]. 

A different research line focuses on the validation of ADS either to verify sat­
isfaction of safety and efficiency properties or even to check that vehicles respect 
given traffic rules. Many works deal with safety verification in a simple multilane 
setting. In [19] a dedicated Multi-Lane Spatial Logic inspired by interval tempo­
ral logic is used to specify safety and provide proofs for Jane change controllers. 
The work in [24] presents a motion planner formally verified in Isabelle/HOL. 
The planner is based on manoeuver automata, a variant of hybrid automata, 
and properties are expressed in linear temporal logic. 

Other works deal with scenarios for modeling the behavior of ADS. Open­
SCENARJO [3] defines a data mode! and a derived file format for the description 
of scenarios used in driving and traffic simulators, as well as in automotive virtual 
development, testing and validation. The work in [9] proposes a visual formai 
specification language for capturing scenarios inspired from Message Charts and 



shows possible applications to specification and testing of autonomous vehicles. 
In [27] a scenario-based methodology for functional safety analysis is presented 
using the example of automated valet parking. The work in [16] presents an 
approach to automated scenario-based testing of the safety of autonomous vehi­
cles, based on Metric Temporal Logic. Finally, the probabilistic language Scenic 
for the design and analysis of cyber physical systems allows the description of 
scenarios used to contrai and validate simulated systems of self-driving cars. 
The Scenic programming environment provides a big variety of constrncts mak­
ing possible modeling anywhere in the spectrum from concrete scenes to broad 
classes of abstract scenarios [17,15]. 

Other works focus on cbecking compliance of vehicles with traffic rules. A for­
malization of traffic rules in linear temporal !agie is proposed in [13]. Runtime 
verification is applied to check that maneuvers of a high-level planner comply 
with the rules. Works in [25,23] formalize a set of traffic rules for highway scenar­
ios in Isabelle/HOL; they show that traffic rules can be used as requirements to 
be met by autonomous vehicles and propose a verification procedure. A formal­
ization of traffic rules for uncontrolled intersections is provided in [21] using the 
CLINGO !agie programming language. Furthermore, the rules are applied by a 
simulator to safely contrai traffic a.cross intersections. The work in [14] proposes 
a methodology for the formalization of traffic rules in Linear Temporal Logic; 
it is shown how evaluation of formalized rnles on recorded drives of humans 
provides insight on what extent drivers respect the rules. 

This work is an attempt to provide a minimal framework unifying the con­
cepts for the specification of ADS and the associated validation problems. The 
proposed semantic framework clearly distinguishes between a static part consist­
ing of the road network with its equipment and a dynamic part involving abjects. 
The static part is a map described as a metric graph obtained as the composition 
of subgraphs representing roads and junctions at different abstraction levels. The 
vertices of the graph are positions and its edges are road segments. Depending on 
the cbosen level of abstraction, segments can be simply the distance between the 
connected positions or curves or even two-dimensional regions. The geometric 
interpretation of segments implies that maps should meet consistency properties 
studied in the paper. It allows multilevel representation using position refine­
ment and segment abstraction. The proposed concept of map is quite general 
encompassing compositional multilevel description of traffic networks. The dy­
namic part of the ADS mode! is a transition system whose state characterizes the 
distribution of objects over a map with their positions, itineraries and attributes 
of their kinematic state. 

We progressively introduce three !agies to express properties of the seman­
tic mode! at different levels. The Metric Configuration Logic (MCL) allows the 
compositional and parametric description of metric graphs. This is a first order 
logic with variables ranging over positions and segments. It uses in addition to 
logical connectives, a coalescing operator for the compositional construction of 
maps from segments. A MCL formula represents configurations of maps sharing 
a coIIlIIlon set of locations. We discuss a specification methodology and show 



how various road patterns such as roundabouts, intersections, mergers of roads 
can be specified in MCL. 

The Mobile Metric Configuration Logic (abbreviated M2CL) is an extension 
of MCL with additional abject variables and primitives for the specification of 
scenes as the distribution of abjects over maps. M2CL foTIIIulas can be written 
as the conjunction of formulas describing: i) static map contexts; ii) dynamic 
relations between abjects; iii) addressing relations between abjects and maps. 
Last, we define Temporal M2CL (abbreviated TM2CL), a linear temporal !agie 
whose atomic propositions are formulas of M2CL. We illustrate the use of these 
!agies for the specification of safety properties including traffic rules as well as 
the description of dynamic scenarios. 

Additionally, we study the validation of properties expressed in the three 
!agies and provide a classification of problems showing that validation of general 
dynamic properties boils down to constraint checking on metric graphs. Checking 
that a finite mode! satisfies a formula of MCL or M2CL amounts to eliminate 
quantifiers by adequate instantiation of variables. We argue that satisfiability 
of M2CL foTIIIulas can be reduced to satisfiability of MCL formulas which is an 
undecidable problem. We identify a reasonably expressive decidable subset of 
MCL and propose a decision procedure. Furthermore, we discuss the problem 
of runtime verification of TM2CL formulas and sketch a principle of solution 
inspired from a recent work with a sirnilar configuration !agie [12]. We complete 
the presentation on ADS validation with an analysis of practical needs for a 
rigorous validation methodology. We describe a general validation environment 
and show how the proposed framework provides insight into the different aspects 
of validation and related methodological issues. 

The proposed framework allows a holistic treatment of ail the aspects of ADS 
modeling. It is not limited to specific contexts such as simple multilane setting, 
intersection, roundabout, parking, etc. It fully encompasses bath dynamic and 
static aspects. Finally, the proposed concept of map allows conciseness and pre­
cision not achievable by ontologies where semantic issues are often overloaded 
and obscured by details that can be added to our mode! without affecting its 
basic properties. 

The paper is structured as follows. In section 2, we study metric graphs and 
their relevant properties for the representation of map models as well as the 
!agie MCL, its main properties and application for map specification. Section 3 
deals with the study of !agies M2CL and TM2CL and their application to the 
specification of safety properties and the description of scenarios. Then, section 
4 discusses a classification of validations problems, approaches for their solution 
and their effective application. Section 5 concludes with a summary of main 
results and a discussion about future developments. 



2 Metric Graphs and Metric Configuration Logic 

2.1 Segments and Metric Graphs 

Segments. We build contiguous road segments from a set S equipped with a 
partial concatenation operator · : S x S --+ S U { l_} and a length norm li· li : S --+ 
R;;,o satisfying the following properties: 

(i) associativity: for any segments si, s2, s3 either both (s1 ·s2)·s3 and s1 -(s2 ·s3 ) 

are defined and equal, or both undefined; 
(ii) length additivity wrt concatenation: for any segments si, s2 whenever s1 · s2 

defined it holds l•1 · •211 = ll•1ll + ll•2ll; 
(iii) segment split: for any segment s and non-negative ai, a, such that 11•11 = 

a1 + a2 there e.xist unique si, s2 such that s = s1 · s., ll•1ll =a,, lls2ll =a,. 

The last property allows us to define consistently a subsegment operation: s[a1, a2] 
is the unique segment of length a2 - al satisfying s = s1 · s[ai, a,] · s2 where 
si, s2 are such that ll•1ll =ai, ll•2ll = 11•11- a2, for any 0 :'::'. al :'::'. a2 :'::'. llsil- For 
brevity, we use the shorthand notation s[a,-] to denote the subsegment s[a, 11•111· 

Segments will be used to mode! building blacks of roads in maps considering 
three different interpretations. futerval segments simply define the length of a 
segment. Curve segments define the precise geometric form of the trajectory of a 
mobile abject along the segment. Region segments are 2D-regions of given width 
around a center curve segment. 

Interval Segments. Consider S;nterval d~ {[O, a] 1 a E R;;,o}, that is, the set of 
closed intervals on reals with lower bound 0, concatenation defined by [O, al] · 

[O, a2] d~ [O, a1 +a,] and length Il [O, a] Il d~ a. 

Curve Segments. Consider Scurve d~ {c: [O, 1]--+ R2 1 c(O) = (0,0), c curve} U 
{ •} that is, the set of curves that are continuous smooth1 and uniformly progress­
ing2 functions c, starting at the origin, plus a designated single point curve •· The 

length is defined by taking respectively the length of the curve llcll d~ J~ lè(t) ldt 
and 11•11 = O. The concatenation c1 · c2 of two curves c1 and c, is a partial oper­
ation that consists in joining the final endpoint of c1 with the initial endpoint 
of c2 provided the slopes at these points are equal. This condition preserves 
smoothness of the curve c1 · c2 defined by c1 · c2 : [O, 1] --+ R2 where: 

def { c1(i) ift E [0,À] llcill 
(cl -c,)(t) = c1(l) + c.(l::~) ift E [À, 1] where À= llc1ll + llc2ll 

Note that in this definition, c1 and c2 are scaled on sub-intervals of [O, 1] re­

specting their length ratio. We additionally take c · • d~ • • c ":1 c, for any c. For 

1 the derivative è exists and is continuous on [01 1] 
2 the instantaneous speed lêl, that is, the Euclidean norm of the derivative is constant 



practical reasons, one can further restrict the set Scurve to curves of some form 
e.g, finite concatenation of parametric line segments and circle arcs. That is, for 
any a, r E JR.~0 , <p E JR, () E JR* the curves line[a, cp], arc[r, <p, O] are defined as 

line[a,cp](t) d:;f (atcoscp,atsincp) Vt E [O, l] 

arc[r,cp,O]{t) d:;f {r{sin{rp+tO)-sincp),r{-cos{rp+tO) +coscp)) Vt E [0,1] 

Note that a and r are respectively the length of the line and the radius of the 
arc, <p is the slope of the curve at the initial endpoint and () is the degree of the 
arc. Fig. 1 illustrates the composition of three segments of this parametric form. 

Fig. 1. Curve segments and their composition 

Region Segments. Consider Sregion d;f Scur1Je x lR).0 , that is, the set of pairs 
(c, w) where c is a curve and w a positive numbei, denoting respectively the 
region center curve and the region width. Region segments can be concatenated 
iff their curves can be concatenated and if their widths are equal, that is, ( c1 , w) · 

( c2 , w) d:;f ( c1 • c2 , w) if c1 · C2 -# 1-. The length of a region segment is defined as 

the length of i ts center curve, 1( c, w) Il d;f lcll · 
Region segments can be equally understood as subsets of points in JR.2 defined 

by algebraic constraints. More precisely, for any curve c and width w the region 
segment (c, w) corresponds to the subset oflR2 defined as {c(t)+.\· ort~(kfl(t)) 1 t E 

[O, l], ,\ E [-~, ~]} where ortho is the orthogonal operator on JR.2 defined as 

ortho((a, b)) d;f (-b, a). In particular, the above definition allows us to system­
atically derive parametric characterizations for region segments constructed us­
ing line or arc curves. The region generated by the curve line[a, r,o] is a rectangle 
containingthe set of points {(atcos<p-.Àsin<p,atsinrp+,\cos<p) 1 t E [0,1],,\ E 

[ - ~, ~]}. The region generated by the curve arc[ r, <p, O] is a ring sector contain­
ing the set of points {((r+.\)(sin(cp+tO)-rsin<p, -(r+,\) cos(cp+tO)+rcoscp) 1 t E 

[0,1],ÀE [-~,~]}. 

Metric Graphs. We use metric graphs G d:;f (V, S, E) to represent maps, 
where V is a finite set of vertices, S is a set of segments and E Ç V x S* x V is a 
:finite set of edges labeled by non-zero length segments in S*. We also denote an 



s d.ef d.ef d.ef 
edge e = (v,s,v') E E by v -+av' and we define •e = v , e• = v', e.s = s. For 

d.ef d.ef 
a vertex v, we define '1 = { ele• = v} and v• = { el•e = v }. We denote by E;f"c 
the finite set of non-empty acyclic3 directed paths with edges from E. We call 
a metric graph strongly (resp. weakly) connected if a directed (resp. undirected) 
path exista between any pair of vertices. A metric graph is called acyclic if at 
most one path, directed or undirected, exist between any pairs of vertices. 

We consider the set Posa"'%! VU {(e, a) 1 e E E, 0 <a< lie.sil} of positions 
defined by a metric graph. Note that (e, 0) and (e, lie.si) are respectively the 
positions •e and e•. Moreover, a s-labelled ride between positions (e, a) and 
(e',a') is an acyclic path denoted by (e,a) ~a (e',a') and defined as follows: 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

e = e', 0 ~a~ a'~ lle.s~, s = e.s[a,a'] 
e = e1

, 0 ~a'~ a~ ~e.s~, e• =•e, s = e.s[a,-] · e.s[O,a'] f 1-
e = e' 0 <a'< a< lie.sil w E E+ e d w e• =·w w• =·e , - - - , ac1 Y::.. ' ' ' 
s = e.s[a, -] · w.s · e.s[O, a'] f 1-
e f e', e• =·e', s = e.s[a,-] · e'.s[O,a'] f 1-
e f e', w E E;f"c, e, e' f/. w, e• =•w, w• =• e', s = e.s[a,-] · w.s · e' .8[0, a'] f= 1-

Fig. 2 illustrates the five cases of the above definition for a simple graph 
with segments 81, s2 and 83. Cases (i) and (ii) correspond to rides on the same 
segment. Case (iii) corresponds to rides originating and terminating in fragments 
of the same segment and also involving other segments between them. Finally 
cases (iv) and (v) are rides originating and terminating at different segments. 

Fig. 2. Rides in metric graphs - cases (i)-(v) illustra.ted 

We define the distance da between positions p, p' as 0 whenever p = p' or the 
minimum length among all segments labeling rides from p to p' and otherwise 
+oo if no such ride exista. It can be checked that da is an extended quasi-metric 
on the set Posa and therefore, (Posa, da) is an extended quasi-metric space. 

2.2 Properties of Metric Graphs 

Contraction/Refinement. A metric graph G' = (V', S, E') is a contraction 
of a metric graph G = (V,S,E) (or dually, Gis a refinement of G'), denoted 
by G i;;; G', iff G is obtained from G' by transformations replacing some of its 

3 every edge occurs a.t most once in the path 



edges e by acyclic sequences of interconnected edges e1e2 ... e .. while preserving 
the segment labeling i.e., e.s = ei.s · e2.s · ... · en.s. 

Example 1. ln Fig. 3, the graph on the right is a contraction of the one on the 
left iff s12 = s14 • s45 • s52, 8~2 = s~6 • 8~2 and s31 = s37 · s1s · ss1· 

E 
refinement 

contraction 

t/8 881 t11 

Fig. 3. Illustration of contraction/refinement on metric graphs 

Note that metric graphs where ail vertices have input or output degree greater 
than one cannot be contracted. Such vertices correspond to junction8 (confluence 
of divergence of roads) when metric graphs represent maps. The following propo­
sition states some key properties on contraction/refinement of metric graphs. 

Proposition 1. Let Con(G) d;f {G' 1 G ç G'}, Ref(G) d;;f {G' 1 G' ç G} be 
respectively the set of contractions, refinements of a metric graph G. 

(i} the refinement relation Ç is a partial order on the set of metric graphs; 
(ii) for any metric graph G, both ( Con(G), Ç) and (Ref(G), Ç) are complete 

lattice8, moreover, (Con ( G), Ç) is finite; 
(iii) for any metric graphs G, G' if G Ç G' then (1) the labelled transition systems 

(Posc,S, -c ) and (Posc1,S, -G' ) are strongly bisimilar and (2) the 
quasi-metric spaces ( Pos G, de) and ( PosG', dG') are isometric; 

Proof. (i) reflexivity, anti-symmetry and transitivity hold by definition of Ç (ii) 
the least common contraction (resp. the greatest common refinement) graph 
is obtained by taking the intersection (resp. the union) of the sets of vertices 
and concatenating (resp. splitting) the set of edges accordingly. Any contraction 
graph in Con( G) is obtained from G by removing a subset of its ( finitely many) 
vertices with input and output degree equal to one (iii) the sets of positions 
and the set of rides are preserved by refinement, hence the labelled transition 
systems are bisimilar. Consequently, distances are preserved so the metric spaces 
are isometric. 



Abstraction/Concretization. Consider S, S' be sets of segments associated 
with respectively concatenation ., .', and length norm 11·11, 11·11'· A function a : 
S --t S' is a segment abstraction if it satisfies the following properties: 

(i) length preseruation: llsll = lla(s)ll', for ails ES 
(ii) homomorphism wrl concatenation: a(s1 ·s2) = a(s1) .' a(s2) for ail s1, s2 E S 

such that s1 · s2 # l_. 

For example, the function a 01 : Scurve --+ Sinterval defined by a 01(s) d;f 

[O, llslll for ail s E Scurve is a an abstraction of curve segments as interval seg-

ments. Similarly, the function aRC: Sregian--+ Scurve defined by aR0 ((s,w)) d;f 

s for ail (s, w) E Sregian is an abstraction ofregion segments as curve segments. 
Dually, we can define concretÎ2ation functions 7 that go from intervals to 

curves, and from curves to regions. For example, for any angles cp, 9 consider 

7~) : Sinterval --+ Scurve where respectively, 7~)([0, a]) d;f arc[~, cp, O] if 0 # 0 

or 7~)([0, a]) d;j line[a, cp] if 0 = O. Or, for any positive real w consider 7;;R : 

Scurve--+ Sregians where 7;;R(s) "";! (s,w). 
Given a segment abstraction a : S --+ S', a metric graph G' = (V, S', E') 

is an a-abstraction of a metric graph G = (V,S,E), denoted by G' = a(G), 
iff G' is obtained from G by replacing segments s by their abstractions a(s). 

That is, any edge u !.+avis transformed into an edge u a(•) G' v. In a similar 
way, 7-concretization on metric graphs is defined for a segment concreti2ation 
7: S' --t S. 

Fig. 4 illustrates the use of the three segment ahstraction levels (respectively 
as intervals, curves, regions) and their associated metric graphs. Interval metric 
graphs are a 01-abstractions of curve metric graphs, which in turn are aRC _ 
abstractions of region metric graphs. Proposition 2 states some key properties 
on abstraction on metric graphs. 

v1 "' • .. ------.,;· V4 d.irected graph 
[O, ai] 

.. 
v1 "' 

·1r 

• 18~3 [O,as] V4 interval. metric graph .. ,, . v1 °' "' ~ ~ • .. \c2 V3 ,, V4 curve metric graph .!: ~ (c1,w) .. .. 
v1 "' • • ' '!: (c:;i,w) -g 8 -0 V3 (es, w) V4 

~--·--------~ region metric graph 

Fig. 4. Illustration of abstraction/ concretization on metric graphs 

Proposition 2. For a segment abstraction a : S--+ S' and metric graphs G, G' 
such that G' = a(G), the labelled transition system (Posœ,S', .,.,G') simulates 
the labelled transition system (Posa, S, .,.,G ) renamed by a. 



Proof. The set of positions are preserved up to homomorphism by a-abstraction 
and any s-labelled ride of G can be simulated by an a(s)-labelled ride of G'. 
Nonetheless, the reverse is not necessarily true as segments si, s2 that do not 
concatenate in G may have abstractions a(s1), a(s2) that concatenate in G' and 
therefore, leading to strictly more rides in G' than G. 

Proposition 3. Metric graph contraction and abstraction commute, that is, for 
any metric gmphs G, G', for any segment abstraction a, ifG ~ G' then a(G) ~ 
a( G'), as depicted below. 

contraction 
<>(G)~----------+ 

---~ 

a-abstraction î ---------
G 

contraction 

a(G') 

î a-abstraction 

G' 

Proof. Recall that segment abstraction is an homomorphism wrt segment con­
catentation, that is, for any s1, s2 such that s1 · s2 # l_ it holds a( s1 · s2) = 
a(s1) · a(s2). Therefore, contracting s1 and s2 into s12 (from G to G') then ab­
stracting s12 as a(s12) (from G' to a(G')) is the same as abstracting si, s2 into 
respectively a(s1), a(s2) (from G to a(G)) then contracting a(s1) and a(s2) 
into a(s1) · a(s2) (from a(G) to a(G')). 

2D-geometric consistency. The concept of 2D-geometric consistency is im­
portant when we use metric graphs to represent 2D-maps. A curve metric graph 
G = (V, Scurve, E) is 2D-geometrically consistent if it can be embedded in the 
2D-plane, that is, there exists an adressing mapping x : V --+ IR2 of vertices 
to coordinates in the 2D-plane such that for any edge e = (v, s, v') it holds 
x( v) + s(l) = x( v'). 2D-geometric consistency can be checked by combining the 
following results. 

Proposition 4. Any acyclic weakly connected curve metric gmph is 2D-geometrically 
consistent. 

Proof. Starting from the known coordinates x(v0 ) for some designated vertex 
Vo it is possible to compute successively the coordinates of ail the other vertices 
as between two vertices there exists only a single undirected path. So given the 
coordinates of any vertex of such a sequence we can compute the coordinates of 
any others such that to ensure consistency. 

Proposition 5. Any weakly connected curve metric graph is 2D-geometrically 
consistent iff for any elementary circuit w ( directed or undirected} it holds LeEw+ e.s(l) = 
LeEw- e.s(l) where w+ {resp. w-) denote the sets of edges taken with their direct 
{resp. reverted} orientation in w. 



Proof. This is a necessary conditiona because for given coordinates x( v) of some 
vertex v from which starts a circuit w, the same coordinates are reached by 
following w, that is, x(v) = x(v) + EeEw+ e.s(l) - EeEw- e.s(l) holds. This 
condition is also sufficient because if we remove edges of the graph so as to 
break all circuits, then by the previous proposition it is possible to find consistent 
coordinate mappings. 

Example 2. Consider the curve metric graph in Fig. 5 representing a 4-way reg­
ular intersection with entrances u1, u2, u3, u4 and exits v1, v2, v3, v4. The edges 
et.j = ( u.; ~ Vj) are defined by the relations: 

Ut 
line[2r+d,O] 

V3 Ut 
arc[r,0,-i] 

V2 Ut 
arc[r+d,O, i] 

V4 

U2 
line[2r+d, f] 

V4 u2 
arc[r, f ,- f] 

V3 u2 
arc[r+d,f ,f] 

V1 

U3 
line[2r+d,.ir] 

V1 U3 
a.rc[r,1T',-i] 

V4 U3 
arc[r+d,11.,f] 

V2 

U4 
line[2r+d,-f] 

V2 U4 
arc[r,-f,-f] 

V1 'U4 
arc[r+d,-f ,f] 

V3 

Note that to prove the 2D-geometric consistency we need to check the identities 
defined for elementary circuits as stated in Proposition 5. For instance, the circuit 
visiting the vertices u2, V4, Ut, va, u2 traverses forwards the edges e24, e13 and 
backwards the edges ei4, e23. Henceforth, one must check: 

e24.s(l) + eia.s(l) ei4.s(l) + e23.s(l) 
line[2r + d, ~](1) + line[2r + d, O] (1) = arc[r + d, 0, ~](1) + arc[r, ~, - ~](1) 

(0,2r+d) + (2r+d,O) (r+d,r+d) + (r,r) 

v' 

u' 1 

Fig. 5. Curve metric graph representing a 4-way intersection 



2.3 The Metric Configuration Logic 

Syntax. Let consider a fixed set of segments S and assume there exists a finite 
set t{I' of segment constructors ST (or segment types), that ÎB, partial fonctions 
ST : ]R= --+ SJ_ for some natural m. For example, we can take s;;,.rve = {line : 
IR2 --+ SJ_, arc : IR3 --+ SJ_} as the set of constructor curve segments Scurv.-

Let K, Z, X be distinct finite sets of variables denoting respectively reals, 
segments and vertices of a metric graph. The syntax of the metric configuration 
logic (MCL) is defined in Table 1. 

t ::=a E lR 1 k E K 1 t + t 1 t · t 
'1/JK ::= t ~ t' 

s ::= sT(t1, ... , t=) 1ZEZ1 s · s 
'1/Js ::= s = s' 1 11•11 = t 

p ::= x EX 1(x,s,t)1 (t,s,x) 

arithmetic terms 
arithmetic constraints 

segment terms 
segment constraints 

position terms 
'1/JG ::=X_".; x' 1 P = p' 1 P ~ p' 1 d(p,p') = t metric graph constraints 

If> ::= '1/JK 1 '1/Js 1 '1/Ja atomic formula 
1 If> + If> 1 If> V If> 1 •If> non- atomic formula 
1 3k. rf>(k) 1 3z. r/>(z) 1 3x. rf>(x) quantifiers 

Table 1. MCL Syntax 

Semantics. Let G = (V, S, E) be a metric gr a ph fixed in the context, and 
let u be an assignment of variables K, Z, X to respectively reals IR, segments 
S, vertices V. As usual, we extend u for evaluation of arithmetic terms (with 
variables from K) into reals. Moreover, we extend u for the partial evaluation of 
segment terms ( with variables from Z) and position terms ( with variables from 
Z and X) into respectively segments S and positions Posa as defined by the 
rules in Table 2. 

T( ) de/ T( ) us ti, ... , tm = s ut1, ... , utm ( ) 
de/ fwd( ) u x, s, t = posa ux, us, ut 

1 def 1 us. s = us. us ( ) de/ bwd( ) u t, s, x = posa ux, us, ut 

where posbwd, posbwd : V X S X lR --+ Posè are defined as 

fwd( ) def ( ) posa v,s,a = e,a 

pos1,w"(v, s, a) ".;! (e, 11•11 - a) 

only if 3! e = (v,s,v') E E, 0 <a< 11•11 
only if3! e = (v',s,v) E E, 0<a<11•11 

Table 2. Evaluation of MCL terms 



We tacitly restrict to terms which evaluate successfully in their respective 
domains. The semantics of the metric configuration logic is defined by the rules 
in Table 3. Note that a formula represents a configuration of metric graphs 
sharing common characteristics. Besides the logic connectives with the usual set­
theoretic meaning, the coalescing operator + allows building graphs by grouping 
elementary constituents characterized by atomic formulas relating positions via 
segments. Hence, the formula </>1 + </>2 represents the graph configurations ob­
tained as the union of configurations satisfying </>1 and </>2 respectively. It differs 
from </>1 V </>, in that this formula satisfies configurations that satisfy either </>1 
or</>,. 

u,G f= t ~ t' iff at ~ut' 
u,G f=s=s' iff us= us' 
u,G f= 11•11 = t iff llu•ll =ut 
u,G f=x~x' iff E = {(ux,us,ux')} 
u,G f=p=p' iff up = up' 
u,G f=p~ p' iff .. ' UP""*G up 
u,G F= d(p,p') = t iff dG(up, up') =ut 
u,G f= </>1 +</>2 iff u, (V, E1) f= </>1 and u.ÇV, E2) f= </>2 

for some E1, E2 such that E1 U E2 = E 
u,G f= </>1 V </>2 iff u, G f= </>1 or u, G f= </>2 
u,Gf=•</> iff u,G~</> 
u,G F= 3k. </> iff u[k r-t a], G f= </>for some a E lR 
u,G f= 3z. </> iff u[z r-+ s],G f= </>for some s ES 
u,G f= 3x. </> iff u[x r-+ v],G f= </>for some v EV 

Table 3. MCL Semantics 

Properties. Table 4 provides a set of theorems giving insight into the character­
istic properties of the logic. Theorems (A.i)-(A.v) illustrate important properties 
of the + operator that is associative and commutative but not idempotent. As 
explained below, of particular interest for writing specifications are formulas of 

the form ~ </> ":;! </> + true. These are satisfied by configurations with graphs 
that contain a subgraph satisfying </>. Hence, while the formula x 4 x' charac­
terizes the graphs with two vertices and a single edge labeled by s, the formula 
"°"" 4 x' characterizes the set of graphs containing such an edge. Thus ~ is a clo­
sure operator which moreover satisfies theorems (B.i)-(B.iv). Finally, theorems 
(C.i)-(C.ii) relate the atomic formula x 4 x' to coalescing and the complement 
of their closure. The two last theorems (D.i)-(D.ii) differ from the others in that 
they express specific properties of segment and metric graph constraints. 

Proposition 6. Metric graph constraints not involving edge constraints of the 
form x ~ x' are insensitive to metric graph contraction and refinement. 



(A.i) (cl>1 + <1'2) +cl» cl>1 + (cl>2 + cl>s) 
(A.ii) cP• +cl>2 - cl>2 + cP• 
(A.iii) cl>+ false - false 
(A.iv) cl>+cl> 't cl> (in general) 
(A.v) cP1 + (ci>2 Vci>a) - (ci>1 + cl>2) V (ci>1 + ci>a) 
(B.i) ~ - "-'ci> 
(B.ii) cl> = "-'ci> 
(B.iii) ~(cl>1 Vcl>,) - "-'ci>1V ~cl>2 
(B.iv) ~(c1>1 + cl>2) - "-'cl>1+ "-'cl>2 - ~1A"-'ci>2 

(C.i) x ~ x' A(ci>1 +ci>,) - (x ~ x' Acl>1) + (x ~ x' Acl>,) 
(C.ii) true - (x ~ x' + •(~x ~ x')) V·(~~ x') 

(D.i) d(p,p') = t Ap .!. p' = t :<:; 11•11 
(D.ii) d(p, p') = t A d(p', p") = t' = 3k. d(p,p") = k A k :<:; t + t' 

Table 4. MCL Theorems 

Proof. This is an immediate consequence of Proposition 1, point (iii), guarantee­
ing preservation of structural properties by contraction and refinernent (bisimi­
larity, isometry). 

Note that stronger preservation results for (even simple fragments of) MCL are 
hard to obtain because the domain of vertex variables is a fixed set of vertices. 
This maires MCL sensitive to bath contraction and refinement. For example, the 
formula 3x. 3y. x .!:.+ y may not hold before and hold after refinement i.e., if a 
pair of vertices u, v satisfying the constraint is added by refinement. 

We provide below abstraction preservation results for MCL formulas. Any 
segment abstraction a : S --+ S' can be lifted to segment terms by taking respec­

tively a(sT(t1, .. ., tm)) d;;f (asT)(ti, .. ., tn), a(s1 ·s2) d;;f a(s1) ! a(s2), a(z) d;;f z. 
Moreover, a can be further lifted to MCL formulas on S. We denote by a(cf>) 
the MCL formula on S' obtained by rewriting ail the segment terms s occur­
ing in cf> by a(s). The following proposition relates abstractions on formulas to 
abstractions on metric graphs. 

Proposition 7. Let cf> be an existential positive M CL formula. Then G F cf> 
implies a( G) F a( cf>) whenever: 

(i) cf> does not contain distance constraints or 
(ii) for any connected edges ei, e2 such that e1 • =· e2 their segments compose, 

that is, e,.s · e.,s 1' _!_, 

Proof. On one hand, the satisfiability of positive segment and graph constraints 
(except path constraints) are preserved by segment abstraction. For exarnple, if 

s1 = s2 holds then a(s1) = a(s2) holds, if x ~ y holds in G then x a(s) y holds 
in a(G), etc. On the other hand, path constraints rely on an implicit universal 
quantification over segments labeling acyclic rides in G. Therefore, they are 



preserved only if, the set of acyclic rides is not augmented by abstraction. This 
is indeed the case if the condition (ii) holds. 

Modeling styles. Configuration logics allow the characterization of config­
urations of graphs by adopting two different and complementary styles. The 
bottom-up style consists in building graphs as the coalescing of atornic formulas 
specifying connectivity relations between vertices. The top-down style consists 
in giving the specifi.cation as the conjunction of formulas. Hence, the meaning of 
the specification is the intersection of the meanings of its conjuncts. 

•• 

line[a, <p + .-] 0~a)arc[r,<p, .-] 
line[a, ip] v2 

Fig. 6. A ring map 

For exarnple, consider the ring rnap of Fig. 6 with four vertices and edges 
labeled by corresponding segments. The bottom-up specification (ring describes 
the ring as the coalescing of the four segments as shown below (left side) whereas 
the top-down specification ering is the conjunction of a set of rules whose appli­
cation defines a ring rnap ( right si de): 

:la. :Jr. :l<p. :lx,. :lx,. :lx3. :lx4. :la. :Jr. V<p. Vx,. Vx2. :lxa 
line[a,rp] arc[r,ip;11'] 

x1 x2+x2 xa+ 
line[a,rp] arc[r,VJ,11'] 

"-'XI X2 ::::}"'X2 X3 /\. 
line[a,rp+11"] arc[r,rp+11" ,rr] 

X3 X4 + X4 Xl 
arc[r,rp,11"] line[a,rp+11"] 

"'Xt X2 =?"-'X2 X3 

It is possible to define a rneaning-preserving correspondence between top-down 
and bottom-up specifications as follows. We consider that bottom up specilica,­
tions are built by coalescing atornic formulas (k of the form x _!; x'. Denote by 

def 
Çk the formula Çk = ~k. 

Given a formula Lk (k the strongest corresponding top-down specification 
is defined by the hornornorphisrn: ~ Lk (k = /\k ~(k = /\k Çk. A weaker top­
down specification that adrnits an interesting interpretation as a conjunction of 
implications is the formula (/\k •Çk)V (/\k Çk)· Note that the conjunction /\k •Çk 
is satisfied by models that do not contain any of the segments of the bottom-up 
specification. The following properties are useful as they provide insight into to 
the way we can write top-down weak speci:fications as a conjunction of "causality 
rules" expressed by implications: 

Â15,k,k'5,m (Çk {o} Çk') 
/\19,k'5,m (Çk =? Çk') 



Note that fi.. f.• = (true 9 6) Il (fl.';~1 f.• 9 f.•œ1). As an application of these 
results let us re-consider the example of Fig. 6 and write the bottom-up specifica,­
tion (ring (making abstraction of quantifiers) as the formula (12 +(23 +(34 +(41· 
The corresponding weak top-down specification is then ( 62 9 f.23) Il ( f.23 9 
64) Il (64 * f.41) Il (f.41 * f.12). Note that the formula above can be simplified 
given that the implications 62 9 f.23, f,34 9 f.41 and respectively f.23 9 64, 
f,41 * f,,2 are of the same form. Hence, they can be replaced by two parametric 
implications by adequately changing quantification. In that manner, we obtain 
precisely the weak top-down specification corresponding to the top-down speci­
fication €ring. 

3 ADS Specification 

The results of the previous section provide a basis for the definition of bath a 
dynamic mode! for ADS and of !agies for the expression of their properties. The 
mode! is a timed transition system with states defined as the distribution of 
abjects over of a metric graph representing a map. Objects may be mobile such 
as vehicles and pedestrians or static such as signaling eqillpment. The !agies are 
two extensions of M CL, one for the specification of preclicates representing sets 
of states and the other for the specification of its behavior. 

We introduce first the concept of map and its properties. Then we define 
the dynamic mode! and the associated !agies. Finally, we discuss the validation 
problem and its possible solutions. 

3.1 Map speciflcation 

A weakly connected metric graph G = (V, S, E) can be interpreted as a map 
with a set of roads R and a set of junctions J, defined in the following manner: 

- a road r of G is a maximal directed path r = vo ~G v1, v1 ~G v2, ... , 

Vn-1 ~G Vn where ail the vertices v1, ... , Vn-1 have indegree and outdegree 
equal to one. We say that Vo is the entrance and Vn is the exit of r. Let 
R = {r;};E1 be the set of roads of G. 

- a junction j of G is any maximal weakly connected sub-graph G' of G, 
obtained from G by removing from its roads ail the vertices (and connecting 
edges) except their entrances and exits. Note that for a junction, its set 
of vertices of indegree one are exits of some road and its set of vertices of 
outdegree one are entrances of some road. Let J = {it}tEL be the set of 
junctions of G. 

Note that G is the union of the subgraphs representing its roads and junc­
tions. For every junction, the strong connectivity of G implies that from any 
entrance there exists at least one path leading to an exit. Additionally, we as­
sume that maps include information about features of roads, junctions that are 
relevant to traffic regulations: 



- roads and junctions are typed: road types can be highway, built-up area 
roads, carriage roads, etc. Junctions types can be roundabouts, crossroads, 
highway exit, highway entrance, etc. We use standard notation associating 
a road or junction to its type e.g., r : highway, j : roundabout. 

- roads, junctions and their segments have attributes. We use the dot notation 
a.x and a.X to denote respectively the attribute x or the set of attributes X 
of a. In particular, we denote by r.en and r.ex respectively the entrance and 
the exit of a road r and by j.En and j.Ex the sets of entrances and exits of 
a junction j. Similarly, r.lanes is the number of lanes of the road r. 

Note that contraction and refinement transform maps into maps. A road may 
be refined into a road while a junction may be decomposed into a set of roads 
and junctions. Furthermore, abstraction and concretization transform maps into 
maps as they preserve their connectivity. 

Given a map with sets of roads and junctions R and J respectively, it is 
possible to derive compositionally its bottom-up and top-down specifications. 
We show first how we can get formulas (;, (r and I;.;, Çr for the bottom-up and 
top-down specifications of j and r, respectively. Let us consider the junctions 
illustrated in Fig. 7: 

- if ra is a roundabout with n entrances ra.En = { enkhE[l,n] alternating 

with n exits ra.Ex = { exkhE[l,n] then its bottom-up specification is (ra d;f 
~n ~n de/ Bk def s1o,1=+1 
L..k=l (k + L..k=l (k,k+1, where (k = exk-"-+ enk and (k,k+l = enk---'-'-+ 

exk+l · The top-down specification is Çra d;f /\~=l Çk /\ /\~=l t;,k,k+I where 
de/ de/ 

Çk = o.{k and t;,k,k+l = o.{k,k+l · 
- if in is an intersection with n entrances in.En = { enk}k=l,n and n exits 

in.Ex = { exkhE[l,n] then its bottom-up specification is (in d;j I:~=l (k 

with (k d;f I:;EJ• enk •k,; ex; and Jk is the set of indices of the exits 
of j.Ex connected to the entrance enk. Hence, the top-down specification is 

de/ /\n de/ l;.;n = k=l Çk where Çk = --<k· 
- the formulas for a merger mg and a fork fk with respectively n entrances 

and n exits and unique exit and entrance respectively, can be obtained as a 
particular case of an intersection. 

- finally, for a road r the corresponding specifications are (r and Çr d;f ~.Pr 
·hçde/ •• w1t r = r.en ~ r.ex. 

Note that a map can be characterized by R = {r;};EJ, J = {jdtEL, and 
a set of connectivity equations E Ç {r;.en = if.exk 1 r; E R,jt E J, exk E 
jt.Ex} U {r;.ex = it.enk 1 r; E R,jt E J,enk E j.l.En} indicating how the road 
entrances/exits are connected to junction exits/entrances (see Fig. 8). Let (;, 
Ç; and (n Çr be the formulas corresponding to the bottom-up and top-down 
specifications of a junction j and a road r. Then the global map specifications 

are (M d;f I;,E1 (r; + I:tEL(;,[E/jt.EnUj[.Ex] where in(;, the entrance and 
exit names of jt are replaced by the corresponding road endpoints. 



roundabout intersection 

::~= 
merger 

en~=i 
-~=n 

fork 

Fig. 7. Junctions and roads 

Fig. 8. Map specification 

3.2 Dynamic ADS Model 

en 

road 

Given a metric graph G representing a map, the state of an ADS is a tuple 

s d:;J (so)oEO representing the distribution of a finite set of objects 0 with their 
relevant dynamic attributes on the map G. The set of objects 0 includes a set 
of vehicles C and sets of immobile equipment used to enforce traffic rules such 
as lights, road signs, gates, etc. 

For a vehicle c, its state Sc d:;J ( it, pos, sp, wt, ln, ... ) includes respecti vely its 
itinemry (from the set of segments S), its position on the map (from Posa), its 
speed (from R.~0), the waiting time (from R.~0 ) which is the time elapsed since 
the speed of c became zero, the lane it is traveling (from IR.~0), etc. For a traffic 

light lt, its state s1t d:;f (pos, cl, ... ) includes respectively its position on the map 
(from Posa), and its color (with values red and green), etc. 

For a given set of vehicles C, we define below the transition relation of the 
dynamic model on tuples of vehicle states (sc)cEC labeled by time increments 
Llt. For this purpose, we assume that each vehicle c is equipped with a function 
c.ctrl that determines its dynamics continuously pursuing two goals: 1) keep the 
vehicle on the trajectory defined by its itinerary; and 2) safety goals e.g., avoid 
collision with obstacles in its neighborhood and respect traffic rules. Then, the 
evolution of some key state variables is defined as follows: 

c.sp(t + L1t) d:;J c.sp(t) + c.ctrl(s(t)) · L1t 

c.pos(t + Llt) d:;J (c.pos(t), c.it(t), c.sp(t) · Llt) 

c.it(t +Lit) d:;J c.it[c.sp(t) · Llt, lc.itlll 

That is, the vehicle c travels at constant speed c.sp(t) for time Llt and 



(i) its speed during the next interval Llt is computed using the speed control 
function c.ctrl depending on system global state s(t). 

(ii) its next position is obtained from c.pos(t) following the itinerary c.it(t) for 
the distance c.sp(t) · Llt. 

(iii) its next itinerary is obtained by erasing the initial sub--segment of the same 
distance from c.it(t). 

Cl 

OBJECT 

DISTRIBUTION 
update atote comptite -<? variable• •9 n=t .tate •9 

EXECUTION ENGINE 

•(t), .dt •(t +.dt) 

c2.ctrl 

Fig. 9. ADS Execution Principle 

Fig. 9 depicts the execution principle by an engine that cyclically updates the 
vehicle distribution on a map representing their environment and coordinates 
the movement of components representing each one a vehicle by choosing an 
adequate execution step Llt. Of course, in this abstract execution we do not take 
into account various a.<ipects of dynamism and reconfiguration discussed in [12]. 

For a map G and an initial state sCto) we define a ru.n a.<i a sequence of 
consecutive states [s(t,)]i~O parameterized by an increa.<iing sequence of time 
points t, E R~o, equal to the sum of the time intervals elapsed for reaching the 
i-th state. 

3.3 Mobile MCL and Scenario Description for ADS 

Mobile MCL (shorthand M2CL) is an extension of MCL for the specification 
of states of dynamic ADS models as distributions of objecta over maps. It is 
equipped with abject variables Y with attributes allowing to express constraints 
on abject states. Object variables in Y are typed and denote objecta from a finite 
set O. Constraints are obtained by extending the syntax of MCL to include object 
attribute terms. For example, if y is a "vehicle" variable then y.it is a segment 
term, y.pos is a position term, and y.ln, y.sp, y.wt are arithmetic terms of M2CL. 
Moreover, M2CL allows for equality y= y' and existential quantification 3y of 
object variables. 

The semantics of M2CL formulas is defined on distributions (u, G, s) where 
u provides an interpretation of variables (including object variables) to their 
respective domains, Gis a metric graph representing the map, and s is the system 



state vector for objects in O. The evaluation of terms is extended to include 
object attributes, that is, for any object variable y with attribute attr we define 

u y.attr d~ Suy(attr). Equality and existential elimination on objects variables 
are interpreted with the usual meaning, that is, y = y' holds on (u, G, s) iff 
uy = uy' and respectively :Jy . ..p holds on (u, G, s) iff ..p holds on (u[y >--+ o], G, s) 
for some object o E 0. 

From a methodological perspective, we restrict to M2CL formulas that can 
be written as boolean combinations of three categories of sub-formulas: 

(i) ..Pmap describing map specifications characterizing the static environment in 
which a dynamic system evolves, 

(il) 1/ldyn describing relations between distributions of the objects of a dynarnic 
system, 

(iü) ..Padd linking itinerary attributes of objects involved in 1/Jdyn to position a<l-
dresses of maps described by ..Pmap· 

The following set of primitives used respectively in sub-formulas of the above 
categories is needed to express ADS scenarios and specifications: 

(i) for x, x' vertex variables, X set of vertex variables, [x right-of x' in X], 
[x opposite x' in X] express constraints on the positioning of x, x' with 
respect to the map restricted to vertices in X (typically a junction): 

[ · ht ,/ f • X] de/ " " " V 1 line[a,,,] 11 /\ arc[r,,,+,.,-'j] 11 
X ng -0; X in = ::Ja.::Jr.:::::icp. x"eX X X X X 

[ 
• 1 • X] de/ :J :::J V line[a,rp] ,, / line[a,rp+w\ ,,, 

X opposite X in = ::Ja.-:::J<.p. x",x"'EX X X A. X X 

(il) for c, o respectively vehicle, object variables, d arithmetic tenn, [c meets(d) o] 
means that c reaches the position of o at distance d: 

[c meets(d) o] ~ 3z, z'. c.pos ~ o.pos /\ c.it = z · z' /\ llzll = d 
(iü) a) for c a vehicle variable, X a set of vertex variables, [c go-straight X], 

[c tum-right X], [c tum-left X] express constraints on the itinerary of c 
within the map restricted to vertices in X (typically, a junction): 

[c go-straight X] ~ 3a.3cp.3z. V œ,:i::'EX c.pos = x /\ x line[a,ip] x' /\ c.it = line[a, cp] · z 

. def arc[r,ip,-VJ 1 • 

[c tum-nght X] = 3r.3cp.3z. V :c,:c'EX c.pos = x A x x /\ c.it = arc[r, cp, -i] · z 
def arc[r,ip,+fl / . '11" 

[c tum-left X] = 3r.3<p.3z. V •,-'EX c.pos = x /\ x x /\ c.it = arc[r, <p, +2 ] · z 
b) for o an object variable, X a set of vertex variables, l an optional arith-
metic term, [o@X, !] means that the position of o belongs to the map sub-
graph restricted to vertices in X and the Jane of o is !: 

[o@X,!] d~ (:id.3s. V •,•'EX x ~ x' /\ o.pos = (x, s,d) V o.pos = x )110.ln = l 

Scenario Description for ADS. We define a scene as a triplet (..Pmap, 1/Jadd, 1/Jdyn) 

of M2CL formulas without universal quantifiers where ..Padd defines the a<ldresses 
of the objects involved in 1/ldyn in the map specified by ..Pmap· As for maps, a 
scene can have a top-down and a bottom-up specification defined respectively 
by the formulas, ....,,Pmap * ..Padd /\ 1/ldyn and ..P=ap /\ ..Padd /\ 1/ldyn· 



A scenario is a sequence of scenes sharing a common map context and in­
tended to describe relevant partial states of an ADS run. There are several 
proposais for scenario description languages [3,9,17,15]. Figure 10 presents a 
scenario of two scenes taken from [3]. The initial scene is defined by: 

1/Jma.p = [r : road(x, s, y)] /\ [s.lanes = 2] 
'l/Ja.dd = [ego©lr, 1] /\ [c1©lr, 1] /\ [c2©lr,2] 
'l/Jd11n = [ego meets(84) c1] /\ [c2 meets(lOO) ego]/\ [ego.sp = c1.sp = 100 /\ c2.sp = 110] 

The second scene after the vehicle c2 passes the ego vehicle is: 

1/J~ .. P = [r: road(x, s, y)]/\ [s.lanes = 2] 
'l/J~dd = [ego@r, 1] /\ [c1@r, 1] /\ [c2©lr, 1] 
'l/J~11n = [ego meets(20) C2] /\ [C2 meets(64) c1] /\ [ego.sp = c1 .sp = 100 /\ c2.sp = 110] 

Note that from a semantic point of view, a scene is characterized by minimal 
models of M2CL (a, G, s} that satisfy the formula and where ail irrelevant com­
ponents of s are omitted. For instance, in the minimal models of the two scenes 
only the components of s corresponding to c1, C2 and ego are taken. 

84m lOOm 

Fig. 10. A scenario 

Of particular practical relevance are dynamic scenarios [15,16] used to control 
the execution of objects of an ADS model. These can be described as sequences 
of guarded commanda of the form sc --+ c1 .act1 & · · · &c,...act.. where the guard 
is a scene sc involving a set of vehicles c1 , · · · c,.. and the command is a list 
of control actions to be executed by the vehicles. The control action c. act is 
an action to be performed by vehicle c and affecting its own state variables. 
Bence, sc --+ c1. act1 & · · · &c,... actn describes a transition of an ADS from a 
scene sc to a new scene obtained by collateral modification of the state variables 
of the involved vehicles after execution of the corresponding actions. We define 
two control actions for a vehicle c and an interval constraint cnt of the form 
speed1 ~ c. sp ~ speed2 : 

- c. move( cnt at d) means that c should travel to a position at distance d and 
c.sp satisfies cnt at this position. That is after executing c.move(cnt at d) 
from state sc with c.pos = p the new state will have c.pos = p + d and the 
speed c.sp will satisfy cnt. 

- c.move(cnt top) means that c should travel to position p while c.sp contin­
uously satisfies cnt. That is after executing c.move(cnt at d) from state se 



the new state will have c.pos = p and the speed c.sp will satisfy satisfy cnt 
at any position between the current position and p. 

We provide below few action rules enforcing ADS properties and traffic rules: 

(i) [c meets(d) st] ---+ c.move(O at d) i.e., c should brake to stop exactly before 
a stop sign; 

(ii) [c@j.En] A [~3c'.c' # c A [c'@j.En] A [c'.wt > c.wt]] A [.i.ex E c.it] ---+ 
c.move(v to j.ex) i.e., if chas been waiting longer than any other carat the 
entrance of a junction j, then it can move to the exit intersecting its itinerary 
reaching speed v; 

(iii) [c@j] A [.i.ex E c.it] ---+ c.move(v to j.ex) i.e., if a vehicle c is in a junction j 
then it will move to its exit intersecting its itinerary; 

(iv) [c meets(d) lt] A [d '.'> dm;n]---+ c.move(O at d) i.e., it c is approachlng a light 
and the distance is Jess than a distance dmin then c should start braking to 
stop at d; 

(v) [c meets(d) lt] A [lt@j.En] A [d '.'> dm;n] A [lt.cl = green] A [.i.ex E c.it] ---+ 
c.move(v to j.ex) 

3.4 Temporal M2CL and Specification of ADS 

Temporal-M2CL (shorthand TM2CL) is defined as the linear tirne temporal 
extension of M2CL. The syntax is as follows: 

'P ::= cf> 1 N 'P 1 'P U 'P 1 'PA 'P 1 3c. 'P 1 ~'P 

where cf> is M2CL formula. The semantics of TM2CL is defined on triples {u, G, [s(t;)];>o) 
containing respectively an assignment of vehicle variables defined in the TM2CL 
context, a map G and a run [s<"l];;:;:o on G for a finite set of abjects O. The 
semantic rules are defined in Table 5. 

u, G, [s(t;)];~o f= cf> iff u, G, sCt•>) f= cf> 

u, G, [s<">],~o f= N 'P iff u, G, [s<•;)].~1 f= 'P 
u, G, [s<••>],~o f= 'P1 U 'P2 iff 3k 2: O. \fj E [O, k - 1]. u, G, [s<••>],~; f= 'P1 

u, G, [sCt;)]<>o f= i/>1 A i/>2 
u, G, [s(t;)],~o f= 3o. if> 
u, G, [s<«>],;o f= ~if> 

and u, G, [s<•;>],~• f= i/>2 
iff u, G, [s<«>]<>o f= 'P1 and u, G, [sCt;)]<>o f= i/>2 
iff u[o >--+ u],G~[s(t;)]<>o f= if>, for some-u E 0 
iff u, G, [s<«>J.~o ~ if> -

Table 5. Semantics of TM2CL 

We use TM2CL for both the specification of system properties and traffic 
rules. The difference between the two concepts is not clear-cut although it is 
implicit in many works. System properties characterize the desired ADS behavior 
in terms of relations between speeds and distances taking into account relevant 



dynamic characteristics. These include properties such "" keeping safe distance 
or keeping acceleration and deceleration rates between some bounds. 

Traffic rules are higher-level specifications for enhanced safety and ef!iciency 
that usually depend on the driving context. They deal not only with obligations 
such "" yielding right of way and traffic contrai at junctions but also advice 
on how to drive sensibly and safely in situations disrupting traffic flow such "" 
congestion, accidents and works in progress. We provide below a formalization 
of system properties and traffic rules showing the expressiveness of our modeling 
framework. We rather focus on the specification of traffic rules because it is 
context sensitive and nicely illustrates the intricacy of the combination of static 
and dynamic aspects. 

Specifications related to junctions (i.e., intersections, roundabouts, etc) are 
written"" implications "'((j) * !P(j) where ((j) is a MCL formula characterizing 
a junction j (cf. section 3.1, see example 2 for illustration) and !P(j) is a TM2CL 
formula specifying the temporal property holding in the context of j. 

System Properties: We provide examples of general properties that should 
be respected for vehicles for any type or road or junction. 

(i) keep safe distance, on the sa.me Jane or during overtaking: 
Vci- Vc2. D [\Id. [c1 meets(d) c2] /\ [abs(c1.ln - c2.ln) < l] =? [d 2'. safe-dist(ci, c2)]] 
where safe-dist(ci, c,) is the minimal distance for safe braking computed"" 
a function of the speeds of the two vehicles/objects ci, c2 and the maximal 
braking force of c1; 

(ii) reduce speed at proximity of a stop sign: 
Ve. Vst. D [\Id. [c meets(d) st] =? [d 2'. safe-dist(c, st)]] 

(iii) whenever moving along arc segments, maintain the centrifugai force below 
some constant threshold C: 
Ve. D [Vr. Vcp. VO. Vz'. [c.it = arc[r,cp,9] · z'] =? [c.weight · (c.sp) 2/r ~Cl] 

Traffic rules for intersection j with all-way stop: We formalize a set traffic 
rules provided in [29]: 

(iv) "li a driver arrives at the intersection and no other vehicles are present, then 
the driver can proceed": 
Vc.Vst. D [st@j.en] /\ [c@j.en] /\ [0 :3c'. c' # c /\ [c'@j]] =? O[c@j] 

(v) "If, on approach of the intersection, there are one or more cars already there, 
let them proceed, then proceed yourself": 
Vc.Vst. D [st@j.en] /\ [c meets(d) st] /\ [d ~ d=in] * 

[•[c©lj]] U [•:lc'.c' # c /\ [c'@j]] 
(vi) "If a driver arrives at the sa.me time as another vehicle, the vehicle on the 

right has the right-of-way'': 
Ve.Ve'. D [c@j.en] /\ [c'@j.en'] /\ [c.wt = c'.wt] /\ [j.en right-of j.en' in j] =? 

[c'@j.en'] U [c@j] 
(vii) "(a) If two vehicles arrive opposite each other at the sa.me time, and nove­

hicles are on the right, then they may proceed at the sa.me time if they are 
going straight ahead. (b) If one vehicle is turning and one is going straight, 



the right-of-way goes ta the car going straight:" 
Ve.Ve'. D [e@j.en] /\ [c'@j.en'] /\ [e.wt = c'.wt = O] /\ [i.en opposite j.en' in j]/\ 

•[3c''. [c''@j.en"] /\ [i.en" right-of j.en in j] V [i.en" right-of j.en' in j]]/\ 
[e go-straight j] /\ [c' go-stmight j] =? O[e@j] /\ [c'@j] 

Ve.Ve'. D [e@j.en] /\ [c'@j.en'] /\ [e.wt = c'.wt = O] /\ [i.en opposite j.en' in j]/\ 
•[3c''. [c''@j.en"] /\ [i.en" right-of j.en] V [i.en" right-of j.en']]ll 
[e go-straight j] /\ •[c' go-straight j] =? O[c@j] 

( viii) "If two vehicles arrive opposite each other at the same time and one is turn­
ing right and one is turning left, the right-of-way goes ta the vehicle turning 
right. Since they are bath trying ta turn into the same road, priority should 
be given ta the vehicle turning right as they are closest ta the Jane" : 
Ve.Ve'. D [e@j.en] /\ [c'@j.en'] /\ [e.wt = c'.wt = O] /\ [i.en opposite j.en' in j]/\ 

[e turn-right j] /\ [c' turn-left j] =? O[e@j] 

Traffic rules for roundabout j: We formalize two traffic rules provided in [30]: 

(ix) "Continue toward the roundabout and look to your left as you near the yield 
sign and dashed yield line at the entrance ta the roundabout. Yield to traffic 
already in the roundabout": 
Ve. D [e@j.en] =? [c@j.en] U [·3c'.3d. [c'@j] /\ [c' meets(d) e] /\ [d :<:; d1e/tll 

(x) "Once you see a gap in traffic, enter the circle and proceed to your exit. If 
there is no traffic in the roundabout, you rnay enter without yielding": 
Ve. D [e@j.en] /\ [·3c'.3d. [c'@j] /\ [c' meets(d) e] /\ [d :<:; d1e/t]] =? O[e@j] 

Traffic rules for intersection j with traffic lights !t: 

(xi) reduce speed at proximity of a traffic light: 
Ve. Vit. D [\Id. [e meets(d) lt] /\ [d :<:; dm;n] =? [d ~ safe-dist(e, lt)]] 

(xii) eventually enter junction j if the traffic light on the entry is green: 
Ve. Vlt. D [\Id. [e meets(d) lt] /\ [d :<:; dmin] /\ [lt@j.En] /\ [lt.cl =green]=? O[e@j]] 

4 ADS Validation 

4.1 Classification of validation problems 

The following categories of validation problems can arise in our framework: 

MCL and M2CL model-checking: (i) given a map specification <Pas a closed 
MGL formula and a metric graph G decide if G is a mode! of </J. The problem 
boils down to checking satisfiability of a segment logie (SL) formula obtained 
by quantifier elimination of vertex variables and partial evaluation of graph 
constraints in <P according to G. We present la ter in this section a decision 
procedure for SL. (ii) Similarly, given a distribution specification <P as a closed 
M2GL formula, a rnap G and a state s for a finite set of abjects 0, decide if 
(G, s) is a mode! of </J. Again, the problem boils down ta checking satisfiability 
of a SL formula obtained by quantifier elimination of vertex and abject variables 
an and partial evaluation of attribute terms. 



TM2CL runtime verification: given a temporal specification if> as a TM2CL 
formula, a map Gand a run [s<«l];>o of an ADS, check if G, [s<«l]<>o is a mode! of - -
if>. This problem boils down to evaluating the semantics of if> on the run. In [12] we 
consider a similar runtime verification problem for temporal configuration logic 
and runs of dynamic reconfigurable systems. We have shown that the evaluation 
of linear-time temporal operators and the model-checking of state/configuration 
specifications can be dealt separately. The same idea can be applied here: on one 
hand, the temporal formulas can be handled by LamaConv [20] to generate FSM 
monitors and on the other hand, the model-checking of distribution specifications 
can be handled by a SMT solver (such as Z3) by using an encoding into a 
decidable theory. 

MCL and M2CL satisfiability checking: (i) given a map specification </! as 
closed MCL formula decide if </! is satisfiable, that is, it has at least one mode!. 
We show next in this section that the problem can be effectively solved for a sig­
nificant fragment of MCL including a restricted form of bottom-up map specifi­
cations. Notice that entailment checking, that is, deciding validity of\lx. </!1 =? </!2 

for map specifications </!i, </!. where /v(</!1) = fv(<f!.) = x, boils down to checking 
satisfiability of 3x. </!1 /\~<P., and can be solved under the same restrictions. (ii) 
Similarly, given a distribution specification </! as a closed M2CL formula decides 
if </! is satisfiable, that is, it has at least one mode!. The problem can be reduced 
to the satisfiability checking of MCL specifications whenever </! is of the restricted 
form 3y1 ... 3yk. </!' where yi, ... Yk are the only object variables occurring in</!'. 
In this case, every object variable y can be substituted by a finite number of 
MCL variables Yattr encoding its identity and attributes. As example, for a ve­
hicle variable y consider an identity (real) variable Y;d, a segment variable Yit, 
a position variable Yposi real variables Ylni Ysp, Ywt, etc. After replacement, we 
obtain an equisatisfiable MCL formula by enforcing the additional constraints 
that state attributes are consistently assigned ( e.g., (Yid = Y,d) =? Yit = y:,) 
for ail pairs y, y' of vehicle variables among yi, .. ., Yk. Finally, notice also that 
entailment checking between distributed specifications can be solved as well, by 
reduction to satisfiability checking as explained above. 

4.2 Satisfiability checking 

Satisfiability checking of MCL. The satisfiability checking for MCL formula 
is undecidable in general. Actually, the combined use of edge constraints x ..".; x', 
equalities on vertex positions x = x', boolean operators and quantifiers leads to 
undecidability, as it allows the embedding of first order logic on directed graphs. 

Nevertheless, for a significant class of MCL formula, their satisfiability check­
ing can be reduced to satisfiability checking of segment logic (SL), that is, the 
fragment of MCL without vertex variables, which is a first order logic combining 
only arithmetic and segment constraints. 



A complete metric graph specification .p• is a MCL formula of the form: 

(1\1,,;i<joSn Xi oj Xj) /\ 0fy. Vf=l Y= Xi) /\ 

(
'<"""n '<"""n '<"""m;; •;;h ) ( n n -'- ) 
L.,,i=l Lij=l Lih=l Xi -=---+ Xj /\ /\i=l Âj=l Ât~h<h'~m.i; Sijh -r Sijh' 

that is, where the set of free vertex variables is x = {x1, .... ,xn}· Note that 
a complete metric specification characterizes precisely a metric graph with pre­
cisely n vertices (in correspondence with vertex variables x1 , ••• , Xn) and, with 
precisely m;; distinct edges (that is, defined by the constraints x; '•;• x; for 
h = l,mi3), for every pair of vertices Xi, x3. 

Theorem 1. Let .p• be a complete metric graph specification with free variables 
x l!J z l!J k. For any MCL formula </> with fv( </>) Ç x l!J z l!J k it holds 

1. the closed MCL formula 3x. 3z. 3k. .p• /\ </> is satisfiable iff 
2. the closed SL formula 

3z. 3k. (l\f=l NJ=l 1\1,,;h<h'oSm;; S;;h oJ B;;h' )/\ 

(l\f=1 l\j=1 l\;:',,'.;'1 lls;;hll > 0) /\ tr(n, E', µ', </>) 

is satisfiable, where n = card x, E* = ur=l Uj=l {(i, Sijhii)}h=l,rni;' µ* = 
{xi>--+ i};=l,n and the translation tr(n,E,µ,</>) is defined in table 6. 

Proof. (1. --t 2.) If the formula .p• /\ </> is satisfiable, then it has a metric graph 
mode! isomorphic to the (unique up to edge labeling) metric graph G.p· specified 
by .p•. The translated formula tr(n, E', µ', </>) represents the evaluation of the 
sema.ntics of</> on the metric graph G.p• according to the rules defined in Table 3. 
It must be therefore satisfiable as well, as initially .p• /\ </> is satisfiable. (2. ~ 1.) 
If the conjunction of the translated formula tr(n, E', µ', </>) and the additional 
constraints has a mode!, ones can use it to build a metric graph, isomorphic to 
G.p•, satisfying both .p• and </>. In particular the additional constraints ensure 
that the metric graph is well formed, that is, ail edges are labeled by non-zero 
length segments, and there are no replicated edges between any pairs of vertices. 

The complete definition of eq-pos and acyclic-path is provided in the ap­
pendix. Also, notice that distance constraints of the form d(p,p) = t have not 
been considered as they are equivalent to 

(p = p' /\ t = 0) V ((3z. p.!;. p' /\ llzll = t) /\ (Vz. P.!;. p' ~ llzll ;::::: t)) 

Satisfiability checking of SL. If segments S are restricted to particular in­
terpretations, the satisfiability checking of formula of SL can be further reduced 
to satisfiability checking of formula of extended arithmetics on reals. 

Theorem 2. If segments S are defined as intervals 

1. the closed SL formula </> is satisfiable iff 



( ./, ) de/ ./, tr n,E,µ, 'f'K = 'f'K 

( ) 
def 

tr n,E,µ,1/Js = 1/Js 
t ( E • ) de/ { s = s;;h if E = {(i,s;;h,j)}, µx = i, µy= j 
r n, ' µ 1 x -t y = false otherwise 

tr(n, E, µ,p = p') d~ eq-pos{n, E, µ,p,p') 

tr(n,E,µ,p ~ p') d~ acyclic-path(n,E,µ,p, s,p') 

tr(n, E, µ,, </>1 + </>2) d:;j V E,uE,~E tr(n, Ei, µ,, </>1) A tr(n, E,, µ,, </>2) 

tr(n, E, µ,, </>1 V </>2) d!;f tr(n, E, µ,, </>1) V tr(n, E, µ,, </>2) 
tr(n, E, µ,, ~<!>) d:;j ~tr(n, E, µ,, </>) 

tr(n, E, µ,, 3k. </>) d!;f 3k. tr(n, E, µ,, </>) 
tr(n, E, µ,, 3z. </>) d!;f 3z. tr(n, E, µ,, </>) 

tr(n, E, µ,, 3x. </>) d!;f V~-l tr(n, E, µ[x >-t i], </>) 

Table 6. Translation rules for Theorem 1 

2. the close.à real arithmetic formula tr, ( </>) is satisfiable, where the translation 
tr1(</>) is defined in Table 7. 

Proof. With interval interpretation, segments are precisely determined by their 
length and ail segment operations and constraints boil down to operations and 
constraints on reals. Moreover, we remark that the transformation does not 
require multiplication4 on real terms, henceforth, the translated formula tr1 ( </>) 
belongs to linear arithmetic iff ail arithmetic constraints .PK within </> were linear. 

tr1(s = s') d:;j tr1(ll•lll = tr1(ll•'ll 
tr1(ll•ll = t) d!;f tr1(ll•llJ = t 

tr1(</>1 V </>2) d:;f tr1(</>1) V tr1(</>2) 
tri(~</>) d:;j ~tr1(</>) 

tr1(3k. </>) d!;f 3k. tr1(</>) 

tr1(3z. </>) d!;f 3k,. tr1(</>) 

Table 7. Translation rules for Theorem 2 

4.3 Validation in the large - Catching up with the needs 

There is a big gap between the state of the art and needs for validation of ADS 
achievable only through simulation and testing due to overwhelming cornplexity. 

4 except if needed for encoding the length of segment types 



How existing results can be integrated into a rigorous validation methodology 
intended to provide conclusive trustworthiness evidence? We bring elements of 
an answer to the above question and show how the proposed framework provides 
insight into the different aspects of validation and related methodological and 
technical issues. 

Fig. 11 depicts the architecture of a general validation environment integrat­
ing three tools: i) a SIMULATOR; ii) a dynam.ic SCENARIO EXECUTION ENGINE; 
and iii) a MONITOR. Simulation is driven by actions generated by the SCENARIO 
EXECUTION ENGINE. It consists in executing the mode! of some ADS and gen­
erating runs checked online by the MONITOR. The three tools collaborate to 
implement an efficient and rigorous validation methodology as discussed below. 

- The SIMULATOR executes a dynam.ic ADS mode! obtained as the composition 
of two entities: 1) a mode! of the world represented by maps and the distri­
bution of the objects with their kinematic attributes; 2) behavioral models of 
objects and their possible interactions. Following the execution principle pre­
sented in 3.2, the SIMULATOR exhibits cyclic behavior alternating between 
concurrent actions of the objects for a lapse of time and computation of the 
resulting state of the world. We assume that the SIMULATOR exports to the 
other tools implementations of basic predicates, variables and actions via an 
interface e.g., in the form of an APL The rigorous definition of the interface 
should rely on a semantic mode! of the simulated system with well-defined 
concept of state and execution step, as described in Section 3.2. 

- The SCENARIO EXECUTION ENGINE drives the simulation process by ex­
ecuting dynamic scenarios and providing sequences of actions executed by 
vehicles in the SIMULATOR. Scenarios are chosen following an adaptive test 
strategy [7]. The purpose is to lead the simulated system to specific con­
figurations e.g. to explore corner cases and high-risk situations or to meet 
specifi.c coverage criteria as discussed below. 

- The MONITOR continuously receives relevant state changes of the global 
system behavior and applies run-time verification techniques checking online 
that the ADS runs satisfy a given set of specifications including traffic rules 
and specific properties. Furthermore, the MONITOR provides diagnostics and 
KPis used by the SCENARIO EXECUTION ENGINE in its test strategy. 

Note that in the proposed architecture, scenarios should be consistent with 
the behavior of the objects specified in the SIMULATOR and the execution con­
text. For instance, if a scenario requires that a vehicle accelerate, this should 
be compatible with its collision avoidance policy (if there is any). Furthermore, 
if the scenario enforces a left turn for a vehicle this should be possible in the 
current execution context. Many works focus on testing a particular "ego" ve­
hicle with respect to the collective behavior other mobile objects specified by 
scenarios. Hence, while the behavior of the tested ego vehicle is integrated in the 
SIMULATOR, the (often-rudimentary) behavior of the other objects may ignore 
the particular execution context possibly leading to inconsistency. 

The described architecture is an adaptive testing environment. Using com­
mon terminology, the SIMULATOR corresponds to a Unit Under Test, the MON-
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Fig. 11. Architecture of Validation Environment 

ITOR is an Oracle and the SCENARIO EXECUTION ENGINE plays the role of a 
Test Case Generotor [16]. To what extent is it possible to ex.tend to ADS con­
ventional testing techniques? The application of a test strategy should aim at 
optirnizing criteria such as coverage and KPl's. If for software systems coverage 
can be defined as the ratio of source code exercised when we run test sequences, 
it is not clear how a similar criterion could be defined for ADS models. 

To reduce the complexity of the space of situations to be explored by test 
strategies, we need structuring criteria for scenarios. One way for achieving this 
aim is to define an equivalence relation on scenes and by extension on scenarios 
preserving correctness for the considered specifications. This idea that is also 
adopted by metamorphic testing [31], may allow a drastic reduction of the test 
cases to be considered. Executions driven by equivalent scenarios should be in­
distinguishable by the MONITOR. Furthermore, testing one scenario per class 
could provide coverage for all its scenarios. 

The efficiency of exploration can be further improved if the equivalence is 
defined by symmetrizing a risk pre-order on scenes and by extension on scenarios. 
Intuitively, given a scene se and a set of traffic rules T R we can compute the set 
of active rules for se, i.e., the subset of rules of T R that are applicable to se. We 
can consider the nllIIlber of active rules for a scene sc as a factor of potential 
risk. Then for the same map context and the same car distribution over roads 
and junction segments, a scene sc is deemed more risky than another se! if the 
set of active rules of se con.tains the set of active rules of sd. 

This idea can be further refined taking the approach applied in [11,12] for 
the analysis of dynamic reconfigurable systems. Given a set T R of tra:ffic rules, 
we can model the risk of a scene sc as a labeled hypergraph whose vertices are 
its abjects with their state attributes and the hyper-edges are traffic rules. ln 
this hypergraph, each abject o of sc is connected to ail the traffic rules of TR 



that are applicable to o. The degree of o measures somehow the risk induced by 
interactions with other objects from the application of the rules of T R. The risk 
hypergraph thus constructed for a given scene se, can provide a basis for the 
evaluation of the risk involved in se as a function of its complexity and other 
state attributes. We can define a preorder relation on risk hypergraphs such 
that if a hypergraph hg contains another hypergraph hg' and aJl the kinematic 
attributes agree, then the risk involved in the scene of hg is hlgher. 

Clearly, any risk hypergraph that is the union of disjoint hypergraphs can be 
decomposed into hypergraphs that can be evaluated independently. This often 
happens because of the locality of the traffic rules; a rule is applicable to a set 
of objects that are geographlcally close in a certain map context. 

Hence, a test strategy could be progressive following the three steps: 

(i) Consider scenarios involving scenes arising in simple traffic patterns such as 
junctions and road types. Such scenarios could generate sequences of scenes 
for roundabout, intersection, merger, overtaking etc. 

(ii) For a given traffic pattern, guide the simulation to produce higher-risk scenes 
e.g. by creating scenes with increasing number of active traffic rules. 

(iii) Embed the tested simple hlgh-risk traffic patterns in a map and progressively 
apply scenarios leading to new hlgher-risk scenes. 

5 Discussion 

The proposed framework relies on a minimal set of semantically integrated con­
cepts. It is expressive and modular as it introduces progressively the basic con­
cepts and carefully separates concerns. It supports a well-defined specification 
and validation methodology without semantic gaps. Using configuration logic al­
lows the specification of behavioral properties taking into account map contexts. 
This is a main difference from approaches relying on temporal logics that cannot 
account for map configurations and where formulas characterize sets of runs in 
some implicit map environment, usually a simple multi-lane setting. Configu­
ration logic specifies scenes as conjunctions of formulas describing map config­
urations and vehicle distributions linked by an addressing relation. It enables 
enhanced expressiveness by combining static and dynamic aspects whlle retain­
ing the possibility to consider them separately. It considers maps as the central 
concept of the semantic mode! and emphasizes the needs for multilevel repre­
sentation depending on the type of goals to be met including long-term mission 
goals, mid-term maneuver goals and short-term safety and trajectory tracking 
goals. Among the three abstraction levels, curve segment models play a central 
role. Interval segment models can account for simple properties depending only 
on relative distances between the involved mobiles. For properties depending 
on topological and geometric relations, curve segment modela are needed. The 
expression of such properties involves primitives such as go-straight, turn-right, 
turn-left, right-of and opposite. Region segment models are needed for low level 
properties taking into account the dimensions of the objects and their movement 
in the 2D space. 



The paper is the culmination of work developed over the past three years both 
on foundations of autonomous systems [18,28] and on modelling and validation of 
reconfigurable dynamic systems using the DR-BIP component framework [5,12]. 
We plan to extend this work in two directions. The first is to leverage on the 
DR-BIP execution semantics and formalize ADS dynanrics as the composition 
of abject behavior acting on maps. The second is ta extend our work on runtime 
verification of dynamic reconfigurable systems [12] by developing adaptive vali­
dation techniques driven by adequate mode! coverage criteria. These techniques 
should provide model-based evidence that a good deal of the many and diverse 
driving situations are covered ( e.g. different types of roads, of junctions, of traf­
fic conditions, etc). Finally, we will investigate diagnostics generation techniques 
linking failures to their causes emerging from risk factors such as violations of 
traflic regulations and unpredictable events. 
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A MCL Satisfiability: Translation Rules 

( E ') def eq-pos n, ,µ,p,p = 

true if p = x, p' = x',µx = µx' 

s = s' /\ t = t' /\ 0 < t < llsll /\ unique(s, S) 
if p = (x, s, t), p' = (x', s', t'), µx = µx', 

8 = {sijh 1 (i,s;3h,j) E E, µx = i} 

s = s' /\ t = t' /\ 0 < t < 11•11 /\ unique(s, S) 
ifp=(t,s,x), p'=(t',s',x'), µx=µx', 

8 = {s;;h 1 (i, Bijh,j) E E, µx = j} 

s = s' /\ t + t' = llsll /\ 0 < t < llsll /\ unique(s, S) /\ unique(s', S') 
if p = (x, s, t), p' = (t', s',x'), 

s = {Bijh 1 (i,s;;h,j) E E, µx = i} 
8' = {s;;h 1 (i,s;3h,j) E E, µx' =j} 

/* and the syrnmetric case * / 
false otherwise 

Remark: in the above, S, S' are multisets. 
Remark: x denotes a vertex position, (x, s, t), (t, s, x) denotes edge positions 

as t must be strictly between 0 and Ils Il 

acyclic-path(n, E, µ,p, s,p') ~ 

3k.3k' .3z.3z'. 
Ve=(i,,,,,,;)EE at-pos(n, E, µ,p, e, k) /\ at-pos(n, E, µ,p', e, k') /\ 

(0 :5 k :5 k' :5 ll•<;hll /\ subseg(s;;h, k, k', z) /\ s = z) V 

Ve=(i,,,,,,;)EE at-pos(n, E, µ,p, e, k) /\ at-pos(n, E, µ,p', e, k') /\ 
(0 :5 k' :5 k :5 lls;;hll /\ subseg(s;;h, k, lls;;hll, z) /\ subseg(s;;h, O, k', z') /\ 

((j=i/\s=z·z') V 

(V wE(E\e);l« 'w = j /\ w• = i /\ s = z · w.s · z'))) 

Ve=(i,sijh.i)EE Ve'=(i' ,si'j'h'•j')EE\e at-pos(n, E, µ,p, e, k) /\ at-pos(n, E, µ,p', e', k') /\ 
(0 :5 k :5 lls;;hll /\ 0 :5 k' :5 lls<';'h' Il /\ subseg(s;;h, k, lls;;hll, z) /\ subseg(si';'h', 0, k', z) /\ 

((j = i' /\ s = z · z') V 

(V wE(E\(e,e'));t
0 

'w = j /\ w• = i' /\ s = z · w.s · z'))) 



at-pos(n, E, µ,p, (i, s;;h,j), k) d~ 

k=O 

k = lls;;hll 
if p = x, µx = i 

if p = x, µx =j 

eq-pos(n,E,µ,p,p)/\ s=s;;h/\k=t ifp=(x,s,t), µx=i 

s = s;;h /\ k + t = lls;;hll if p = (t, s, x), µx = j 

false otherwise 

b ( ') de/ su seg s, ti, t2, s = 

0 :<::'. ti :<::'. t2 :<::'. llsll /\ :Jz,. 3z2. llz1 Il = ti /\ llz2ll + t2 = llsll /\ s = z1 · s' · z2 
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