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AI – Where We Are, Where Are We Going? 

At present, there's a great deal of confusion as to the final objective, fuelled by the media and large technology companies, who, 
through grandiose large-scale projects, spread opinions suggesting that human-level AI is only a matter of years away.
Opinions divided between two very different positions: 

 Others see the goal of AI as building machines with Human-level Intelligence, which requires agreement on what human 
intelligence is and, more importantly, on methods for comparing human and machine intelligence.

 According to the Oxford dictionary, intelligence is defined as 
“the ability to learn, understand and think in a logical way about things; the ability to do this well”

 Machines can do impressive things by outperforming humans in the execution of particular tasks, but they cannot 
surpass them in situational awareness, adaptation to changes in their environment and creative thinking.

Without a clear idea of what intelligence is, we cannot develop a theory of how it works! 

 Some AI research and companies such as OpenAI and DeepMind see Artificial General Intelligence (AGI), an ill-defined 
term, as the ultimate goal 
 suggesting that  AGI can be achieved through machine learning and its further developments – ML is the “end of the 

story” whatever the result is. 
 focusing on building  "super-intelligent agents" capable of analyzing large datasets, identifying patterns and efficiently 

making data-driven decisions in a variety of sectors, from healthcare and finance to transportation and manufacturing.



Where We Are?  – From Conversational to Autonomous AI 

 The AI industry revolution has only just begun!  Its realisation depends largely on our ability to develop AI monitors and 
end-to-end AI controllers to build autonomous systems.

 AI is still in its infancy, despite impressive results culminating in the arrival of generative AI, 
 it only gives us the elements to build intelligent systems, but we don't have the principles and techniques to synthesise 

them, for example in the way we construct bridges and buildings..
 It focuses on assistants, while its future applications require continuous interaction with little or no human intervention.

Autonomous AI 

 Three different ways to use AI systems:
1. Assistants that in interaction with a user, provide a given service; 
2. Monitors of a system behavior synthesizing knowledge to detect or predict critical  situations; 
3. Controllers of a system so that its behavior meets a given set of requirements, e.g. the autopilot of an autonomous car.
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Where We Are? – Validation of AI Systems 

 The extensive use of AI systems - reputed to be "black boxes" - raises questions about their trustworthiness characterized by 
a set of properties including safety and security.
 It is impossible to apply verification techniques that are essential to obtain strong trustworthiness guarantees.
 In particular,  AI safety has preoccupied authorities in both the USA and Europe who, despite numerous consultations 

and legislative efforts, have been unable to draw up a concrete and realistic regulatory framework to date.

 In addition to technical properties, great deal of work is aimed at building AI systems that satisfy human-centric properties
 "Responsible AI" implies that the development and use of AI meets criteria such as fairness, reliability, safety, privacy 

and security, inclusiveness, transparency, and accountability,  difficult, if not impossible, to assess.
 “AI alignment" meaning alignment of a conversational agent with human values while we do not even understand how 

human will emerges and the associated value-based decision-making system works. 
 The properties of mental attitudes such as belief, desire and intention are superficially attributed to AI systems.

 But all this work lacks foundation, because it ignores a basic epistemic principle: any claim that a system satisfies a property
must be backed up by a rigorous method of validation.

 Can the properties of AI systems be guaranteed in the same way as the properties of traditional digital systems?
 How traditional systems engineering help us to tackle the problem of guaranteeing the properties of AI systems? 
 Is it possible to transpose existing validation methodologies to AI systems? If so, what are the obstacles? 
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Autonomous Systems – Trends and Characteristics 

 Autonomous systems are the ultimate stage in the evolution of AI 
 are distributed real-time systems, made up of agents, each pursuing specific goals (individual intelligence), but all 

coordinating in such a way that the system's behavior meets specific objectives (collective intelligence).
 are often critical systems intended to replace human operators in complex systems and organizations as envisioned by 

the IIoT, e.g. self-driving cars, smart grids, smart factories, robotic process automation.
 are highly dynamic, reconfigurable systems that never stop and evolve online to adapt to the constantly changing 

environments and user requirements – design-time vs. runtime correctness.

 To make the autonomy vision a reality, new theoretical and technical foundations need to be developed, 
 that rejuvenate traditional systems engineering with hybrid design flows supporting  the integration of data-based and 

model based techniques  seeking trade-offs between design-time and run time correctness.
 where knowledge development and management is an additional and decisive factor in overcoming complexity and 

compensating for the non-explicability of AI. 

 Current industrial trends in the development of autonomous systems are undoubtedly strengthened by the advent of generative 
AI, but obtaining trustworthiness guarantees remains an unavoidable and challenging  objective.
 The autonomous car sector is leading the way with AI-based end-to-end solutions that lack trustworthiness guarantees;
 Progress in other sectors such as avionics, robotics, and networks, is more gradual.



Autonomous Systems – Self-driving Agent Architecture
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Autonomous Systems – Complexity Issues 
 Autonomous agents rely on computational intelligence to overcome complexity limitations 

 Complexity of perception due to the difficulty to interpret stimuli (cope with ambiguity, vagueness)  and to timely generate 
corresponding inputs for the agent environment model. 

 Complexity of uncertainty due to situations involving imperfect or unknown information implying lack of predictability 
about the environment such as dynamic change caused by physical or human processes, rare events, critical events 
such as failures and attacks.

 Complexity of decision reflected in the complexity of the agent’s decision process (goal management and planning) and 
impacted by factors such as diversity of goals and size of the space of solutions for planning.

 However, building autonomous agents is not enough!
 Agents should be 

o integrated in complex cyber physical environments systems e.g. electromechanical  systems  
o be able to harmoniously collaborate with human operators – It's not just an HMI problem!

 Agents of a system should be adequately coordinated to achieve 
o Symbiosis: the coordination of agents does not impede the achievement of their individual goals
o Synergy: agents collaborate to achieve global system goals by demonstrating collective intelligence.

See the controversies surrounding the deployment of robotaxis in SF, e.g. obstructing traffic, blocking police cars.
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Autonomous Systems – From Agent Intelligence to Collective Intelligence 
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Autonomous Systems – Agent AI

 We Need both Data-based and Symbolic!!

Even the most fervent partisans of ML agree on the need to connect ML and symbolic computation to reach autonomous AI.
How can we get data-driven learning and symbolic “World Models” to work together? Two divergent opinions:

 symbolic reasoning can emerge from learning as machines become more and more powerful (“scale is all you need!”). 

 The other holds that symbolic reasoning must be hard-coded from the outset, e.g. neurosymbolic approach.

 LLMs are not enough!

 they are based on a probabilistic model of natural languages and fail to grasp common sense knowledge, in particular 
about space and time they are limited in mathematical reasoning, 

 they are limited when it comes to playing games or driving cars .... 

 The trend is away from end-to-end solutions towards architectures that increase the accuracy and predictive power of LLMs

 by increasing their capabilities through access to “World Models" stored in long-term memory, e.g. Retrieval-Augmented 
Generation (RAG) architecture.

 by relying on symbolic decision engines such as provers (AlphaGeometry), response engines (WolframAlpha), simulators, 
probabilistic programming tools, etc.

In both cases, establishing a link between symbolic and data-based knowledge is the major challenge.

With the advent of LLMs, AI agents have attracted growing interest.



Autonomous Systems – Agent AI 

A Path Towards Autonomous Machine Intelligence 
Neurosymbolic Information Processing Systems, 

LLM-powered autonomous agent system, Lilian Weng June, 2023 Generative Agents: Interactive Simulacra of Human Behavior. arXiv:2304.03442v2 . 

AGENT Al: Surveying the Horizons of Multimodal Interaction 



Autonomous Systems – General Agent Architecture 
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Validation of AI Systems – Neural Networks vs. Traditional Digital Systems

COMPUTER

step1

step2

NOYES

 Execute algorithms.
 Deal with explicit model-based knowledge.  
 Can be understood and verified!

NEURAL NETWORK 

 Can be trained to generate data-driven 
knowledge 

 Learn to separate "cats from dogs" as children do. 

 Neural networks are artifacts, not models!  Models are 
o representations of things that we use to explain and understand them. 
o essential for science and engineering: they enable us to reason about the things represented.

 Neural Networks do not execute algorithms, we use algorithms to train them!

 There is a remarkable analogy between the two computing paradigms and Kahneman's two systems of thinking:  
o System 1: fast automated thinking, dealing with implicit knowledge;
o System 2: slow conscious thinking, dealing with explicit knowledge.  



Validation of AI Systems – Explainability 

y= F(x1,x2,x3)
x2

x3

x1

 NN explainability : characterize the I/O behavior of a 
NN by a model  obtained as the composition of  the 
behavior of its elements.

 A system is explainable if its behavior can be described by a model that lends itself to reasoning and analysis. 
System models are usually built following a compositionality principle:

 In scientific disciplines, explainability is based on mathematical models, such as differential equations and 
statistical models.

 For traditional digital systems, explainability is usually based on discrete models, such as transition systems.

 For feed-forward networks, it is theoretically possible to calculate the output as a function F of the inputs, 
given the functions calculated by each node:   φ(weighted_sum_of_inputs), where φ is an activation function. 

 However, the approach does not scale up for NN’s in real-life applications. Only for classes of small feed-
forward NNs with simple activation functions, approximations of F can be computed. 

Note: Other, weaker notions of explainability fail to provide rigorous characterization sufficient to guarantee safety  
properties, e.g., extracting a textual description of behavior or causal dependency between input/output variables.



Validation of AI Systems – Model-based vs. Data-based Approach

 Traditional systems engineering 

 adopts model-based development  methodologies driven by 

requirements and involving precise design and validation activities.

 supposes that requirements can be broken down into properties 

satisfied by systems components.

 the developed system properties can be estimated by model-based 

analysis and reasoning, e.g. 10-8 failures/ hour of operation.

 Transposing this paradigm to ML faces insurmountable obstacles! For example, consider a classifier
 sorting  the CVs of applicants for a nursing post in a hospital and giving them marks: plus, minus, zero.
 considered to be safe if it is free of any kind of bias, e.g., gender bias, age bias, race bias etc.

 Its development relies solely on data analysis, involving in particular causal and statistical inference.

1) Requirements: faithfully represent the desired functionality by the ground truth – If, for equal formal qualities, women 

prove to be more capable than men, then this difference should be reflected in the ground truth. 

2) Design: develop a ML system such that the obtained input/output behavior is statistically consistent with the ground truth. 

3) Validation:  test statistically the absence of bias for the classifier deployed in a particular context.



Validation of AI Systems –Validation  Methods  

 Epistemic and methodological imperatives applied to the development of scientific and technical knowledge, establishing 

that "a system S satisfies a property P", 

 require that not only P be rigorously defined, but also that a falsifiable validation method be provided. 

 combine  reasoning on models (verification) and experiment (testing).

 Verification consists in comparing a model of S against 
some specification of P. 

 can examine the whole system behavior described 
by a model, and decide about the validity of its 
properties. 

 can validate properties involving universal 
quantification e.g. that all system states are safe, 
or that for any system run there exists a 
rejuvenation state. 

 is the only way to obtain solid guarantees on the 
satisfaction of technical properties.

 Testing is a controlled experiment on the S (real or 
virtual) to assess the degree of validity of P.

 is subject to observability and controllability 
constraints: distinction between system inputs 
(controllable) and outputs (observable) 

 is limited to properties P characterizing an I/O 
relation; properties involving universal quantification 
such as safety and security, can only be falsified.

 produces  empirical knowledge - can fully validate 
only properties of combinatorial systems

To what extent can the properties of AI systems 
be validated using test methods?



Validation of AI Systems – Test Methods 
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 Tests are used to validate experimentally that a system y=S(x) satisfies a property P(x,y).
1. System S: the system under test e.g. an electric bulb, an autopilot or an AI component; 
2. Property P: a predicate (hypothesis) characterizing the I/O behavior of S; 
3. Oracle: is an agent that can decide logically or empirically whether P(x,y) holds producing verdicts pass or fail.

 Test method: How do you choose between possible test cases and decide whether the process is successful or not?

1. Coverage Function:  coverage(X)∈[0,1] measures the extent to which the set of test cases X explores the 
characteristics of the system's behavior in relation to the property P.

2. Score Function: score(X,Y) measures for a test set (X,Y) the likelihood that S meets P . 

Reproducibility: If (X1,Y1), ( X2,Y2) are two sets of tests then: 
coverage(X1)=coverage(X2) implies score(X1,Y1) ~ score(X2,Y2)
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Validation of AI Systems – Applicability of Test Methods 

 The development of test methods for AI systems 
 is hampered by the lack of explainable models for reasoning about the test space and developing coverage criteria. 

 is limited to properties P that can 
o be rigorously specified, which excludes Q/A relations LLMs;
o be observed, which excludes "human-centric" properties e.g., intentionality, belief, awareness.

System  S Property P Test method Oracle for P Results 
Evidence that S satisfies P/

Reproducibility of results 
Solar System Newton’s second law F=ma Model-based coverage criteria Method to check that F=ma Conclusive evidence/ 

Objectivity 

Software y=S(x) ∀x∈Dom(x) P(x,y)

P: correctness property

Model-based coverage criteria Automated analysis for a 
given set of test cases 
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Validation of AI Systems – When a Self-driving Car  is Safe Enough? 

 The inability to build global system models limits system 
validation to simulation and testing.

 Simple simulation is not enough  - how a simulated 
mile is related to a “real mile” ? 

 We need evidence, based on coverage criteria, that the 
simulation deals fairly with the many different situations, 
e.g., different road types, traffic conditions, weather 
conditions, etc.

 We are badly lacking Test Methods for AI systems similar to 
those applied to software and hardware systems.

 Sampling theory: methods for building samples that 
adequately cover real-life situations. 

 Repeatability: for two samples with the same degree of 
coverage, the estimated confidence levels are 
approximately the same..
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Where Are We Going? – The Space of Possible Intelligences 

 The space of possible intelligences: equivalent systems may use very different creative processes. 
 Humans are limited in analysis of multidimensional data, but are capable of common sense, abstraction and creativity.  
 AI systems outperform humans in learning multidimensional data, but fail to link symbolic to data-based knowledge.

 We need to explore the vast space of intelligences, particularly 
by delving into the various aspects of human symbolic 
intelligence and their relationship to data-driven intelligence.

 Can we bridge the gap between symbolic and concrete 
knowledge exclusively by using neural networks? 

 Is it possible to trade symbolic reasoning capability for data-
based learning  as shown by LLM’s opening the way to 
efficient solutions to symbolic reasoning problems e.g. 
MathPrompter

 Autonomous systems encompass a multi-faceted concept of intelligence.

 There are multiple intelligences, each characterizing the ability to perform a task in a given context;
To say that “S1 is smarter than S2”  is meaningless without specifying the task and the criteria for success.

 Human intelligence is not a theoretical concept, it  is the result of historical evolution in a given physical environment.
If human intelligence is the benchmark, AI should be able to perform/coordinate a set of tasks characterizing human skills. 



Where Are We Going? – Property Validation of AI Systems 

 When it is impossible to apply the scientific method, we have to study specific techniques between rigorous validation and 
qualification tests for assessing human skills. 

 What if we applied qualification exams rather than rigorous tests to LLMs?
After all, there is every reason to believe that LLMs  will be able to pass the final exams just as well as students. 
However, we must not ignore fundamental differences between NNs and humans:
 Human thinking is robust, whereas neural networks are not (slight changes in questions imply different answers). 
 Human thinking based on common-sense knowledge, is better placed to avoid inconsistencies in the answers produced. 
 Humans are responsible for the consequences of their actions or omissions - we won't put a machine in jail!!

 The tendency to consider AIs as moral entities seems to be a way of avoiding the debate on the validity of technical properties 
and the application of associated scientific methods.
 Unlike technical properties, ethical properties cannot be decided solely on the basis of the agent's observable behavior, 

without knowing its beliefs and intentions. 
o saying that “the earth is round” may be lie or ignorance; 
o non awareness that I am doing something wrong does not imply my responsibility.

 Many works on “Ethical AI” superficially attribute mental attitudes such as belief, desire and intention to autonomous agents: 
“we cannot show that an agent always does the right thing, but only that its actions are taken for the right reasons”. 

 Avoid superficial debates about human-centric properties of machines, in the absence of any rigorous characterisation.

 Strive to overcome current limitations with clarity, developing new foundations, and possibly revising epistemic and 
methodological requirements, where necessary.



Where Are We Going? – AI meets Systems Engineering 

 The development of autonomous systems requires a marriage between ICT and AI, which poses non-trivial technical 
problems. New trends are disrupting traditional critical systems engineering. 

 adopting ML-based end-to-end solutions that do not provide trustworthiness guarantees;
 allowing "self-certification“, in the absence of standards;
 allowing regular updates of critical software - trustworthiness cannot be guaranteed at design time as required by 

standards - systems will be evolvable, with no end point in their evolution.

 The transition from Automation to  Autonomy cannot be progressive! We need to develop a new scientific and engineering 
foundation. And this will take some time.

 Hybrid design leveraging on a solid body of knowledge for safe and efficient decision making.
 Getting around the non-explainability obstacle: Build trusted systems from untrusted components.
 Linking symbolic and non-symbolic knowledge e.g. sensory information and models used for decision-making.
 For AI systems 

o Consider how restrictions on  training data sets allow for better predictability and controllability: 
when an LLM explains how to make a bomb, it sums up information acquired during its training

o Explore new avenues for explainable AI.  

 System validation marked by the shift from rationalism to empiricism.
 Simple simulation is not enough - Develop statistical testing techniques for AI monitors and end-to-end controllers.
 Weaker trustworthiness guarantees that can be offset by the use of knowledge-based techniques.



Where Are We Going? – Risks and Their Regulation 

 There is a gap between the EU and the US when it comes to AI regulation: 
 EU has strong and more complete AI regulations, in particular with two texts, the AI Act and the Digital Services Act.
 US  regulations are much less coercive e.g. the AI Executive Order (issued on October 30 2023) 

o .

 The chances of reaching agreement on a global regulatory framework for AI, as advocated by the UN, are currently slim, 
 the US is taking advantage of its supremacy in conversational AI, to impose a self-regulating, market-centric approach.
 the current balance of power can change if other countries with a significant industrial base, take a strong position in 

the autonomous AI race, and join forces for AI regulation that harmonizes development and trustworthiness.

 Unfounded and deliberately nurtured myths predict domination of man by machine. However, AI is neither good nor bad! 
The challenge is to use it wisely, to prevent risks by regulating its application, and make the most of it for society.
.
 Technology risks: from hazards compromising an AI’s ability to meet safety and security requirements.

 Human risks: from misuse or unintentional impact of AI that can be controlled by regulatory or legal frameworks. 

o Loss of jobs due to automation can be offset by an appropriate social policy e.g. for quality of life, new needs. 

o If an LLM can generate deepfakes - which is considered a technological risk - its use can be prohibited by law!



Thank you 
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