
Joseph Sifakis

April 22, 2021

Design for Dependability

Design for Dependability – Complex Systems Engineering

COMPLEX
SYSTEMS

ENGINEERING

HW
Engineering

SW
Engineering

AI
Autonomous
Systems Eng

Telecom
Engineering

Reliability
Engineering

Service-oriented
Engineering e.g.
Fintech, Health,
Leisure

 Complex Systems Engineering systems needs to integrate
methods and tools from other engineering disciplines to
face the IoT challenge.

 Complex Systems Engineering is at a turning point facing
a huge gap moving from

 Small Centralized, Automated, Predictable systems to
 Large Decentralized, Autonomous. Unpredictable Systems

 Reliability Engineering has historically emerged as a sub-
discipline of Physical Systems Engineering is often
presented as something apart from the other system
design activities.

 I will advocate further integration of Reliability Engineering
methods and practices in Systems Design.

Acknowledgement: The presentation integrates conclusions of joint work with Huawei’s Reliability
Lab in Shenzhen on Design for Dependability

O
V
E
R
V
I
E
W

3

System Design and Dependability

Design for Dependability

 Risk Analysis

 Risk Mitigation

 Risk Evaluation

Discussion

Design – Two Gaps, Two Steps

R
eq

ui
re

m
en

ts
(d

ec
la

ra
tiv

e)

Ex
ec

ut
ab

le
 S

W
 M

od
el

(F
un

ct
io

na
l P

ro
pe

rti
es

)

H
W

/S
W

 S
ys

te
m

(E
xt

ra
-fu

nc
tio

na
l P

ro
pe

rti
es

)

SW development Implementation

Correctness? Correctness?

© Joseph Sifakis - May 2020

Design – The Concept of Dependability

5

 Dependability expresses assurance that the designed system can be trusted that it will perform as expected
despite any kind of hazard due to

HW failures Design/Programming Errors Environment
Disturbances

Malevolent
Actions

© Joseph Sifakis - May 2020

 About the concept
 Dependability is a number quantifying a probability . BUT there is no general agreement on a definition of
dependability – other terms such as trustworthiness are considered to be equivalent.
 Usually list of attributes of uneven relevance is given to characterize the concept such as Reliability,
Availability, Maintainability, Integrity, Robustness, Safety, Accountability, Security, Performance, etc.

 Dependability introduces a distinction between Nominal and Out-of-nominal conditions:
 Nominal conditions define assumptions about an ideal system environment (execution and physical

environment)
 Out-of-nominal conditions consider situations where rare events violate nominal conditions

Dependability focuses on the system trustworthiness for out-of-nominal conditions

Design – Basic Properties vs. Dependability
N

O
M

IN
AL

C
O

N
D

IT
IO

N
S Safety:

The system is safe
if no bad situations
can be reached
resulting in the
violation of critical
constraints e.g.
temperature< limit.
service_available

Security:
The system is secure
if it can cope with
attacks and
malevolent actions –
non violation of a set
of properties such as
privacy, confidentiality
and integrity

Efficiency:
characterizes the useful work performed by the system
using resources (memory, energy, time, money) based
on two criteria
1) Performance: how well the system does wrt user
demands e.g. throughput, jitter, latency, quality.
1)Cost: how well resources are used wrt economic
demands e.g. storage efficiency, energy efficiency,
processor utilizability,.

Basic system properties (imply requirements under nominal conditions)

Nothing BAD can happen Something USEFUL is done

O
U

T-
O

F-
N

O
M

IN
AL

Dependability Attributes
 focus on the estimation of the probability that events violating nominal conditions have an impact on

basic system properties;
 reliability is the most important and hard to compute dependability attribute - all the others depend on it

and can be derived with moderate effort.

Design – Separation of Concerns in the Design Flow

System Design

System Model

Execution Platform
Model

Mapping

Requirements

Verification/
Validation

Performance Analysis /
Design Space Exploration

Application SW

SW Design

SW Components+
Architecture

Functionality
(Nominal Conditions)

Efficiency- Resources
(Nominal Conditions)

Execution Platform

Code Generation

Implementation
Model

Dependable
System Design

Risk Analysis /FDIR/
Reliability Evaluation

Dependability
(Out-of-Nominal Conditions)

Design – Complexities

Requirements

Elicitation

Properties

SW

HW/SW System

SW Development

SW Deployment

System Model

Evaluation/Verification

System Modeling

Ontologic complexity: are the requirements
“complete”? The“unknown-unknown”

Linguistic complexity: is the specification
language expressive enough to account
for the concepts of requirements ?

Epistemic complexity:
is the modeling
language expressive
enough to account for
system features?

 Computational
Complexity

 System
Complexity

Aleatory complexity: is the behavior of my
system predictable – randomness of events

Understanding WHY
something can go wrong !!

O
V
E
R
V
I
E
W

9

System Design and Dependability

Design for Dependability

 Risk Analysis

 Risk Mitigation

 Risk Evaluation

Discussion

Design for Dependability – General Flow
RISK ANALYSIS

Identify system
hazards and
estimate their
likelihood in terms
probabilities of their
unintended causes

RISK EVALUATION

Given probabilities of
hazards and their effect on
the nominal system
behavior, estimate the
probability that the system
meets a set of properties
characterizing its
correctness.

RISK MITIGATION

Based on Risk Analysis,
design and implement for
each hazard
corresponding
mechanisms for
 Detection
 Identification
 Recovery

Risk Analysis – Flow and Terminology

System Hazards: any deviation from the expected system nominal behavior e.g. violation of safety or security as
well as performance degradation,

Losses: consequences of system hazards including loss of human life or human injury, property damage.
environmental pollution, loss of mission, loss of reputation, loss or leak of sensitive information etc.

Failure (random)
 due to aging in a VLSI
 failure of an engine

Error (non-intentional)
 Programming error
 Erroneous architecture

Security flaw (intentional)
 Exploited by a hacker
 Allowing malevolent action

HW+Controlled Environment Malevolent Human EnvironmentBuilt-in development defectsC
A

U
SE

S

SYSTEM = (Architecture + Components) interacting with an Environment

Fault is a manifestation at component level of failures or errors Security threat

Hazard (fault or threat)

EF
FE

C
TS

Risk Analysis – Fault-tree Analysis

 A Fault Tree is a Boolean Expression on basic fault variables

FT ::= bf | tle FT | FT ∧ FT | FT ∨ FT.

 We can write tle= ∨I∈FCS ∧i∈ I bfi
where FCS= Fault Cut Set a set of faults such that their presence

makes the top level event true.

For a= bc ∨ d ∨ e the cut sets are {bc}, {d}. {e}

a

b c d e

Given a Fault Tree we can compute probabilities under the assumption of independence between the basic faults.

 For a = bc ∨ d ∨ e we can compute Pr(a) as a function of Pr(b), Pr(c), Pr(d), Pr(e) using the rules :

 Pr(x∧y) = Pr(x) Pr(y)
 Pr (x∨y) = Pr(x) + Pr(y) - Pr(x) Pr(y)
 Pr (¬x) = 1- Pr(x)

 Thus Pr(a) =
Pr(¬ (¬ b ∨ ¬ c) ¬ d ¬ e))= 1- Pr(¬ b ∨ ¬ c) ¬ d ¬ e))= 1- (Pr(¬ b)+ Pr(¬ c)- Pr(¬ b)Pr(¬ c)) Pr(¬ d) Pr(¬ e)

Risk Analysis – System Theoretic Process Analysis (STPA)

1) Define
Purpose of
the Analysis

2) Model
the Control
Structure

3) Identify
Unsafe Control
Actions

4) Identify
Loss
Scenarios

STPA

STPA (N. Leveson et al. MIT) is a hazard analysis methodology focusing on unsafe interaction between components
in a hierarchical control stricture
 Step 1: what kinds of losses will the analysis aim to prevent?
 Step2: build a system model capturing functional relationships and Interactions as a set of feedback control loops.
 Step3: analyse control actions in the control structure to examine how they may lead to the losses defined in the

Step 1. Unsafe control actions are used to create functional requirements and constraints for the system.
 Step4: identify the reasons why unsafe control actions might occur ln the system by creating explicative scenarios.

Identify
Losses and Hazards

System
Boundary System

Environment

Risk Analysis – STPA: Some Conclusions
STPA is the systematization of a risk analysis methodology. It reflects practice in the domain of aeronautics and gets
acceptance in automotive industry
 The analysis is manual and hard to be formalized as it is – it is applicable to systems with a limited number of

possible losses (accidents)
 It distinguishes between different types of faults (provided, not provided, too early or too late, stopped too soon or

applied too long) but the component behavior is implicit.

Control Structure

Losses
(Accident)

System
Hazards

System Level
Constraints/

Responsibility

Responsibility

UCA

Controller Constraint
Scenarios

CA
(Improper
execution)

 The methodology distinguishes
between GOOD (Constraints,
Responsibilities) and BAD
(Hazards, Losses);

 Responsibilities are invariants
(monitors) of the behavior of the
components;

 Projecting System Level
Constraints into responsibilities
(local constraints) is not trivial :
The conjunctions of the
Responsibilities should imply the
System Level Constraints.

Risk Analysis – Fault Propagation and Transformation Calculus (FPTC)

 FTPC (Wallace et al. University of York, 2005) goes one step further than STPA, in an attempt to analyze the
causality relation between types faults in hierarchical data-flow networks.

 Components and connectors are specified by an I/O relation  between fault values where
 * : denotes the absence of fault;
 f : is a variable denoting any type of fault .

 Components are specified by sets of rules. They can:
 be source of faults : *  f (produces a fault f)
 be sink of faults: f  * (tolerates or corrects a fault f)
 propagate a fault f : f  f
 transform a fault f1 into fault f2: f1  f2

 A fault ontology defines types of faults for the variable f (this gives a lot of freedom):
 Value faults: cause the components to respond at the correct time interval but with wrong values
(Detectably wrong, Undetectably wrong)
 Timing faults: cause components respond with correct value but outside the time interval (Early or Late)
 Service provision faults: component fails to produce an appropriate output (Omission) or produces an
inappropriate output (Commission)

Risk Analysis – FPTC (Fault Propagation and Transformation Calculus)

© Joseph Sifakis - September 2020

The system comprises four software components, connected using three instances of a signalling communication
protocol. This protocol uses a destructive (non-blocking) write, and a destructive (blocking) read.
(From Paige et al. “Automated Safety Analysis for Domain-Specific Languages,” 2008)

Risk Analysis – A Synthesis

FTA, FMECA (Failure Mode, Effects & Criticality Analysis), ETA (Event Tree Analysis): global reasoning at system
level in terms of failure modes and their effects

 determine AND/OR combinations of causality relations;
 components have no behavior – they can be OK or KO with some probability.

Behavioral analysis of the out-of-nominal behavior (AltaRica. AADL, Statistical Model-Checking at Verimag)
 Relies on component-based representation of the system with probabilistic hazard events and modes;
 Algorithmic analysis techniques can be applied to estimate probabilities of loses.

STPA:
 Reasoning on a hierarchical control structure independent from the actual implementation and

distinguishing between the system and its environment;
 Local reasoning at each component level and synthesis of the analysis via scenarios – Nonetheless
components have no explicitly specified behavior.

FPTC:
 Analysis based on the systems hierarchical control data-flow structure;
 Components have known I/O behavior with respect to predefined fault types;
 The analysis can be automated and has been implemented in tools.

O
V
E
R
V
I
E
W

18

System Design and Dependability

Design for Dependability

 Risk Analysis

 Risk Mitigation

 Risk Evaluation

Discussion

Risk Mitigation – Fault Detection, Isolation, Recovery (FDIR)

Fault recovery:
 using fault-tolerance mechanisms that mask the detected fault e.g. TMR;

 online using roll-back techniques to a trustworthy saved state that existed prior to the occurrence of the fault
(caused by SW error);

 online using roll-forward techniques to a to a trustworthy new state (caused by SW error);

 online through reconfiguration that preserves some minimal service leaving out the faulty components ;

 offline with system re-initialization after checking that the causes of the detected fault are not present anymore.

Fault detection: achieved
 on line without disturbing service delivery e.g. using monitors, redundancy, error detecting codes;
 off line by applying testing and diagnostics techniques.

Fault isolation: various techniques such as
 In SWE use of partitioned architectures such that the memory and processing time of a partition is not affected

by another faulty partition;
 In Control Theory “model-based techniques”.

Risk Mitigation – Principle

20

Fatal States

Mitigation :
1) develop a model BH relating nominal behavior B to a set of hazards H (from Risk Analysis);
2) design and implement failure detection isolation and recovery mechanisms.

Non-Trustworthy States

Critical States
Non-Critical States

BH

 Worst-case analysis and static resource reservation is defeated by the overwhelming complexity of modern
systems and may lead to over-provisioned systems

 Idea: move to Run-time Assurance Techniques

Trustworthy States

Nominal
Behavior B

X
Non-critical
State

Risk Mitigation – Run-time Assurance
 Replace redundancy techniques and detailed risk analysis by Runt-time Assurance:

 Run in parallel the Untrusted System and a Run-time Assurance System consisting of a Trusted Monitor and a
Trusted Recovery System.

 The Trusted Monitor detects discrepancies from the nominal behavior;
 The Trusted Recovery System can cope with hazards detected by the Trusted Monitor;
 The Switch provides the output of the Untrusted System as long as no hazard is detected.

Untrusted
Instrumented System

Trusted
Monitor

C
on

tro
lle

d
Pl

an
t

Trusted
Recovery System

Switch

© Joseph Sifakis - May 2020

RTA System

Risk Mitigation – Run-time Assurance: Trusted Monitor Generation

Untrusted
System

Trusted
MonitorInstrumented

Untrusted System

Critical Property
Specifications

Code
Instrumentation

Tool

Monitored events

Allowed
Behavior

Added observables

O
V
E
R
V
I
E
W

23

System Design and Dependability

Design for Dependability

 Risk Analysis

 Risk Mitigation

 Risk Evaluation

Discussion

Risk Evaluation – Reliability, Availability etc.
Reliability:
 Reliability is the probability R(t) that a system fails at time t
 For fixed failure rate λ we have R(t)= e –λt and probability of failure F(t)=1- e –λt

Statistical Analysis: For given failure rate λ (failures per unit e.g. time, km) the confidence C to the system after n
units of failure-free operation is C=1-(1- λ) n
Therefore, the number of units required to operate without failure to achieve confidence C:

n = ln (1-C)/ln(1-λ)
For instance, for 1-λ=99.9999989% with a C=95% confidence we need n = 275 million failure-free units.

Availability = Uptime /Uptime+Downtime

 MTBF (Mean Time Between Failure) = 1/λ
 MTTR (Mean Time To Repair) = Σ λi ti / Σλi where

λi is the failure rate for the ith failure mode
ti is the time to repair the system after the ith failure
has occurred

 We can also define MTBM (Mean Time Between Maintenance), MMT (Mean Maintenance Time), MDT (Mean
Downtime) and of course maintainability, serviceability, manageability etc.

Risk Evaluation – Estimating System Reliability

1. Composition of a functional model obtained as the serial and parallel composition of components

R1 R2

R= R1R2

R1

R2

R= 1-(1-R1)(1-R2)

3. General model-based analysis techniques on models representing the faulty system behavior.
© Joseph Sifakis - May 2020

2. Analysis of behavioral stochastic models e.g. Markov Chains suffer from well-known limitations e.g. state
explosion, lack of theory for model composition

p

g 1-p-g

1-p

Overflow
p

p

g

11-p-g

Risk Evaluation – Behavioral Aproach

Nominal system behavior model B

 Estimating “likelihood” to reach bad states (in red)
 Strategies for avoiding bad states
 Design space exploration of parametric models for risk minimization

Risk analysis

Hazards+
probabilities

Out-of-nominal system behavior model BH

h1
h2

h3
h4

h7

h5
h6

Evaluation – Behavioral Aproach
Given a system with nominal behavior B=(Q, ) where Q is its set of states and  is the transition relation
find the system BH modeling the out-of-nominal behavior BH =(QH, H) for a set of hazards H such that

 QH = Q ∪ C where C is a new set of critical states Q∩C = ∅
 BH contains the behavior of B ( ⊆H)
 BH has transitions of the form:

q –h c (hazard h occurs), c1—hc2(transition between critical states)

¬φ

h1 h3

h2 h4 h5

Initial
States

BH

φ is a safety constraint - so
¬φ characterizes critical
states

 Given BH and the probabilities that the hazards happen we can estimate the probability to violate a
constraint φ by application of algorithmic analysis techniques e.g., statistical model-checking;

 Note that the approach can be used for Risk Analysis – for instance to computing cutsets as the
sets of hazards of a path leading from initial states to violation of φ, e.g. h1 h3 ∨h2h4h5.

O
V
E
R
V
I
E
W

28

System Design and Dependability

Design for Dependability

 Risk Analysis

 Risk Mitigation

 Risk Evaluation

Discussion

Discussion – The Big Picture

 Application Domains: Industry e.g. data, production; Services e.g. communications, health,….
 Computing Infrastructure: Execution platform e.g. physical vs virtual; architecture e.g. centralized vs..
 Types of systems: Neural nets, HW, HW/SW, OS, Middleware, Data Base, Service Systems, ….

SYSTEMS

SY
ST

EM

C
O

N
ST

R
U

C
TI

O
N

(K

no
w

le
dg

e
Ap

pl
ic

at
io

n)

SY
ST

EM

VA
LI

D
AT

IO
N

/
EV

AL
U

AT
IO

N

(K
no

w
le

dg
e

Ac
qu

is
iti

on
)DESIGN FOR

FUNCTIONALITY

DESIGN FOR
EFFICIENCY

DESIGN FOR
DEPENDABILITY

D
ES

IG
N

M

ET
H

O
D

O
LO

G
Y

METHODS & TOOLS
 Transformation methods
 Synthesis methods
 Experimentation/validation/Evaluation methods

LANGUAGES
 General purpose programming languages e.g. imperative, functional, logical ….
 Domain Specific: Synchronous; Modeling languages e.g. UML. Query languages …..
 Non-executable languages: Natural Languages, Logic-based languages e.g. Temporal logics,.

MATHEMATICAL MODELS
 Dynamic systems
 Dynamic model execution
 Logic-based property description

Discussion

SY
ST

EM

VA
LI

D
AT

IO
N

/
EV

AL
U

AT
IO

N

(K
no

w
le

dg
e

Ac
qu

is
iti

on
)

 We should integrate dependability techniques into systems design flows

 Design for dependability should be a concern from the beginning and should take into account all the aspect
of system development and validation

 For risk analysis we should move from Boolean FTA to techniques that take into account system architecture
e.g. STPA and behavior e.g. FPTC

 Traditional FDIR techniques require a detailed static analysis often defeated by the overwhelming system
environment complexity and lead to overprovisioned solutions – we should move to Runtime Assurance
Techniques.

 Traditional reliability evaluation is limited to data-flow functional systems – we should explore component-
based techniques modeling the effect of failures on nominal behavior and amenable to statistical analysis.

 Dependability terminology
 Terminology is useless if it is not connected to methodologies describing how methods, tools and

competences can be combined to produce systems - Reliability engineering is often presented as something
apart from the other system design activities.

 What matters is not so much the choice of terms themselves but the coverage of all the useful concepts
 We need a dependability ontology integrated in a general system design ontology and relying on a minimal

and complete set of core concepts:- current terminologies are vague, with overlapping concepts.

THANK YOU

	Design for Dependability
	Design for Dependability – Complex Systems Engineering
	Slide Number 3
	Design – Two Gaps, Two Steps
	Design – The Concept of Dependability
	Design – Basic Properties vs. Dependability
	Design – Separation of Concerns in the Design Flow
	Design – Complexities
	Slide Number 9
	 Design for Dependability – General Flow
	Risk Analysis – Flow and Terminology
	Risk Analysis – Fault-tree Analysis
	Risk Analysis – System Theoretic Process Analysis (STPA)
	Risk Analysis – STPA: Some Conclusions
	Risk Analysis – Fault Propagation and Transformation Calculus (FPTC)
	Risk Analysis – FPTC (Fault Propagation and Transformation Calculus)
	Risk Analysis – A Synthesis
	Slide Number 18
	Risk Mitigation – Fault Detection, Isolation, Recovery (FDIR)
	Risk Mitigation – Principle
	Risk Mitigation – Run-time Assurance
	Risk Mitigation – Run-time Assurance: Trusted Monitor Generation
	Slide Number 23
	Risk Evaluation – Reliability, Availability etc.
	Risk Evaluation – Estimating System Reliability
	Risk Evaluation – Behavioral Aproach
	Evaluation – Behavioral Aproach
	Slide Number 28
	Discussion – The Big Picture
	Discussion
	Slide Number 31

