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Autonomous systems – Main Characteristics 
Autonomous systems are essential for reaching the Industrial IoT vision. 
 They emerge from the needs to further automate existing organizations by progressive and incremental 
replacement of human operators by autonomous agents. 

 They are very different from game-playing robots or intelligent personal assistants. 

 They are often critical and should exhibit “broad intelligence” by handling  knowledge in order to 

 Manage dynamically changing sets of possibly conflicting goals – this reflects the trend of transitioning from 

“narrow” or “weak” AI to “strong” or “general” AI.

 Cope with uncertainty of complex, unpredictable cyber physical environments.

 Harmoniously collaborate with human agents e.g.  “symbiotic” autonomy.
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 Two different technical avenues both falling short of the autonomy challenge:
 traditional model-based critical systems engineering, successfully applied to aircraft and production systems, 
proves to be inadequate. 
 industrial end-to-end AI-enabled solutions currently available e.g. NVIDIA’s PilotNet, fail to provide the required 
strong trustworthiness guarantees.



Autonomous systems – For a New Scientific and Engineering Foundation 

We need a new scientific and engineering foundation that  cannot be obtained by simply combining existing 
results developed for more than two decades and focusing mainly on SW systems e.g. Autonomic computing,  
Adaptive systems, Autonomous Agent Systems and brings answers to the following problems:

1. Bridging the gap between Automation and Autonomy 
 What are the technical solutions for enhancing a system’s autonomy? 
 For each enhancement, what are the implied technical difficulties and risks?

2. Relate system trustworthiness to knowledge truthfulness about the developed system. 

3. Move from traditional system design to “hybrid” design seeking trade offs between trustworthiness of 
model-based and performance of data-based approaches.

4. Develop new theory for the validation of autonomous systems based on simulation and testing -
allowing to provide conclusive trustworthiness evidence.

Systems Engineering is facing a huge gap, moving
FROM Small size Centralized Automated Predictable Envt Elicitable Specs

TO Complex Decentralized Autonomous Unpredictable Envt Non-elicitable Specs
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Why is it so hard? – Autonomous Agent Architecture 
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Why is it so hard? – SAE Autonomy Levels
SAE AUTONOMY LEVELS 

Level 0 No automation
Level 1 Driver assistance required

The driver still needs to maintain full situational awareness and control of the 
vehicle e.g. cruise control. 

Level 2 Partial automation options available
Autopilot manages both speed and steering under certain conditions, e.g. 
highway driving. 

Level 3 Supervised Autonomy
The car, rather than the driver, takes over actively monitoring the environment 
when the system is engaged. However, human drivers must be prepared to 
respond to a "request to intervene”

Level 4 Geofenced autonomy
Self driving is supported only in limited areas or under special circumstances, 
like traffic jams

Level 5 Full autonomy
No human intervention is required e.g. a robotic taxi
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Why is it so hard? – Symbiotic Autonomy
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 Study modes of interaction 
between machines and 
humans to accomplish 
complex tasks/missions

 For each mode and 
function, determine the 
division of roles in terms of 
responsibility/accountability  
and reactivity/proactivity

 Implement each mode as a 
protocol amenable to 
formalization and 
verification 
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Autopilot Design – Critical Systems Engineering Limitations

 The model-based paradigm is defeated by the 
overwhelming complexity and diversity of 
autonomous systems 

 This explains the adoption by industry of end-to-
end machine-learning-enabled techniques which 
however preclude conclusive safety guarantees 

Critical systems design flows follow model-
based prescriptive frameworks recommended 
by standards e.g. ISO26262 

 Assume that system development is top-
down and validation is bottom-up.

 Assume that all requirements are initially 
known, can be clearly formulated and 
understood. 

 Consider  that global system requirements 
can be broken down into requirements 
satisfied by system components. 

 Focus on providing model-based
conclusive evidence that the system is 
safe e.g. 
10-9 failures per hour of flight 
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Autopilot Design – Principles 
 Hybrid approach:

 Combine ML (for perception only) with a full-fledged model-based decision process 

 Rely on a functional characterization of autonomy distinguishing between main functions

 Provide strong trustworthiness guarantees 

 Hierarchical decomposition 

 Avoid on line plan generation and consider instead that autonomous behavior can be implemented by 
integrating a set of (precomputed) maneuver protocols – strong assumption to be validated experimentally !!

 Each protocol corresponds to a “driving mode” or “driving skills” determined be hierarchical decomposition of 
the function of driving 

 Protocols are needed to deal with

1. Different types of junctions such as roundabouts, splits and joins, entrance and exit adaptors, 
intersections, crossings ( toll station pedestrian crossing, railroad crossing);

2. Different types maneuvers for different contexts e.g. overtaking, platooning, parking. 
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Autopilot Design – Hierarchical Semantic Model 
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Autopilot Design – Hierarchical Architecture 

Level0: Drive-by-wire Infrastructure 

Level1: Trajectory tracking & Collision Avoidance

Longitudinal
Collision 
Avoidance

Lateral
Collision 
Avoidance

Trajectory 
Planning &
Tracking

Level2: Maneuver Protocols

Default Overtaking
Protocol 

Other 
Protocol

Level3: Environment model &Analysis

Safety Envelope
Computation Path Planning 

(Lane map)

Environment 
Modeling

Maneuver Planning 

Level4: Goal Management & Planning 
Mission  Planning (Road map) 

Sensors 

Localization &
State Estimation  

Detection &
Tracking

Perception

a θc

Obstacles

(x,y,v,θ),

Prebuilt 
Road&Lane
Maps

Envelope

Raw dataManeuver Command
Sequence vt θt

Joseph Sifakis - Why is it so hard to make self-driving cars?  - Waymo- March 19, 2021



Autopilot Design – Risk Management
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Autopilot Design – Risk Analysis Levels
We can combine the different techniques depending on the type of system and the desired degree of analysis.

1. Global reasoning at system level e.g. traditional approaches with FTA , failure modes and effects criticality 
analysis (FMECA), event tree analysis (ETA),
 determining AND/OR causality relations between hazards e.g. Fault Tree Analysis  
 components are just functions with no behavior – the can be OK or KO with some probability 

2. Analysis based on a hierarchical control structure  e.g.  STPA
 conceptual model independent from the actual implementation  
 local reasoning at each component level 

3. Data flow analysis with known I/O behavior of components with respect to predefined global types – global
causality analysis e,g. FPTC (Fault Propagation and Transformation Calculus) 

4. Behavioral analysis of a system component-based model with nominal and hazardous states e.g. BIP with 
statistical model checking, AADL,  AltaRica, 

 Can be combined with Risk Analysis techniques to take account only manifestations of of low level hazards 
 Can be adapted to cover all aspects of Risk Analysis, FDIR analysis, Reliability Evaluation



Autopilot Design – Risk Mitigation: FDIR 

16

Fatal States

Problem: 
1) develop a model BH connecting nominal behavior B to detectable hazards – not all hazards of Risk 

Analysis will  appear at model level;
2) design and implement failure detection isolation and recovery mechanisms for classes of hazards. 
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B

Fatal States 
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X
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 Static risk mitigation techniques cannot be fully applied to autonomous systems: 
 Overwhelming environment complexity and lack of predictability; 
 Use of “black-box” ML-enabled components. 
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Autopilot Design – Risk Mitigation: Failure Typology 

Pre-crash failure typology covering 99.4% of light-vehicle crashes for 5,942,000 cases. 
Source: Pre-Crash Scenario Typology for Crash Avoidance Research, DOT HS 810 767, April 2017.
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Autopilot Design – Risk Mitigation: Run-time Assurance 
 Idea: replace static DIR analysis at design time by run-time monitoring and recovery   

 The architecture integrates the Untrusted System and the Run-time Assurance System consisting of a Trusted 
Monitor and a Trusted Recovery System.

 The Trusted Monitor detects discrepancies from the nominal behaviour;
 The Trusted Recovery System is a trusted simplified version of the untrusted system that is able to provide 

some minimal service when some hazard occurs;
 The Switch provides the output of the Untrusted System as long as no hazard is detected; otherwise, the 

Trusted Recovery System takes over.
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Autopilot Design – Risk Evaluation: Behavioral Aproach

Nominal system behavior model B

Hazardous system behavior model BH

 Estimating “likelihood” to reach bad states 
 Strategies for avoiding bad states 
 Design space exploration of parametric models for risk minimization  

Risk analysis 

Hazards+
probabilities
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When Self-driving Cars are Safe Enough? – The “Miles Argument”

The “miles argument” should be substantiated with “model-based” evidence 

It is possible to compute (*) the number of miles 
needed to drive without accident 
 for given rate of accident type per mile driven 
 for given confidence level 

(*) 
https://www.rand.org/content/dam/rand/pubs/research_reports/
RR1400/RR1478/RAND_RR1478.pdf, Rand report April 2016 
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https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf


When Self-driving Cars are Safe Enough? – Gaps in the State of the Art

 Global system validation is achievable only through simulation and testing, which nonetheless should take into 
account the following:

 All the simulated miles are not equally efficacious - how a simulated mile is related to a “real mile” ?

 Any technically sound safety evaluation should be model-based e.g. relies on criteria defined on an implicit or 
an explicit system model.

 We need evidence that simulation covers a good deal of the many and diverse situations e.g. different types of 
roads, traffic conditions, weather conditions etc.
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 We need validation theory based on the semantic simulation model.

 Notions of coverage measuring the degree to which relevant system configurations have been explored, as for 
structural testing of software systems. 

 Scenario description languages to explore/detect corner cases and high risk situations, exactly as for functional 
testing software systems. 

 Verdicts and diagnostics about the relationship between failures and various risk factors (road structure, 
congestion level, weather) and violations of traffic regulations. 



When Self-driving Cars are Safe Enough? – Simulation Key Issues

1. Realism: agent behavior and environment look real in a way that is accurate or true to life. 

2. Modeling: expressive modeling language e.g. DSL for the component-based description of mobile agents and 
their dynamic coordination.

3. Semantic awareness: the simulated system dynamics is rooted in transition system semantics. 
 Notion of state allowing controllability and repeatability of experiments.
 Notion of execution sequence distinguishing between controllable and uncontrollable actions 
 Multiscale multigrain modeling of time scales and of their correlation with space scales   

4. Performance: run-time infrastructure federating simulation engines e.g. HLA, FMI

 Whatever design approach is taken, simulation is of paramount importance for validation – and raises a large 
variety of problems from purely technical to theoretical ones.

 Not only the appearance should be realistic but also it should be real:  the execution mechanism should rely on 
a semantic model of the environment consistent with laws of Geometry and Physics.

 Note that realism and consistency with reality are hard to reconcile - simulation environments built on top of 
game engines lack semantic awareness.
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When Self-driving Cars are Safe Enough? – Modeling: DR-BIP 
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Configuration rules
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DR-BIP (Dynamic Reconfigurable BIP) is a DSL that supports a modeling 
methodology relying on the following principles:

 A system is a set of (architecture) motifs

 A motif  is a “world” where components live, a coordination mode 
consisting of 

 A set of components, instances of types of agents or objects 
 A map that is a graph (N,E) used to describe relations between 

components e.g. geographical, organizational, etc.
 An address function @ mapping components into nodes of the map 

 Interaction rules: define interactions (atomic multiparty synchronization) 
between components  

 Configuration rules:
- Mobility of components (change of @)
- Creation/deletion of components
- Dynamic change of the map 

Map

MOTIF

Address function: @

The meaning of systems models is defined using operational semantics  
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When Self-driving Cars are Safe Enough? – Modeling: DR-BIP

Interaction rule:
for all a,a’:vehicle, if [dist(@(a),@(a’))<l] then exchange(a.speed,a’.speed).

Mobility rule :
for all a:vehicle if @(a)=n and @-1(n+1)=empty then @(a):=n+1.
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When Self-driving Cars are Safe Enough? – Simulation Environment 
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When Self-driving Cars are Safe Enough? – Maps

A map is a directed graph:
Vertices vi : positions 
Labels si: road segmentsv1 v2 v4v3s1 s2 s3

v1 v2 v4v3s1=[0,3] s2=[0,4] s3=[0.2]

v1
v2

v4

v3s1
s3s2

Interval map 
(each segment is a continuous interval)

Curve map
(each segment is a curve and for two 
successive segments s; s’ we have 
s.φ2=s’.φ1

C
oncretization 

v2
v4

v3s1 s3s2
Region map 
(each segment is a region with additionall 
conditions for the composition of regions)

v1
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When Self-driving Cars are Safe Enough? – Configuration Logic 

v1 line(d,φ)

v4

[0,d]

[0
,π

r]

v2

v3

v1 v2 

v3 

arc(r, φ, π)

v4 [0,d]
[0

,π
r]

Interval Map 

line(d,φ+π)

arc(r, φ+ π, π)

Curve Map

Ring(d,r) =  ∃ v1,v2,v3,v4   line(d,φ) (v1,v2)∨ arc (r, φ,π)(v2,v3) ∨ line (d, φ+π)(v3,v4) ∨ arc(r, φ+π,π)(v4,v1)

v1 line(d,φ)

v4

v2 

v3 

arc(r, φ, π)

line(d,φ+π)

arc(r, φ+ π, π)

Geometric  Interpretation of a Curve Map

(x1,y1, φ) (x2,y2, φ)

(x3,y3, φ+π)(x4,y4,φ+π)
We have for each segment s a mapping function m  
 m[s] (x0,y0, φ0) = (x,y,φ)
 m [line(d)] (x,y,φ)= (x+d cosφ, y+d sinφ, φ )   ---
 m [arc(r, θ)](x,y,φ) = 

(x- r sin(φ) + r sin(θ+φ), y+r cos(φ) - r cos (θ+φ), θ+φ )

m[s1.s2]= m[s2](m[s1])



When Self-driving Cars are Safe Enough? – Validation: Scenarios (1) 

SYSTEM

PROPERTY SPECIFICATION LANGUAGE
(First Order Configuration Logic)

1. Configuration language e.g. connectivity 
and state predicates with quantification 
over components, contexts

2. Contexts e.g.  Motifs, Maps, Modes

3. Temporal logic relations e.g. usually 
linear temporal logic or time stamps 

MONITOR (Runtime Verification of Properties) 
∀c1,c2
 @(c1) --d@(c2) => d >= 10
 At_Intsec(c1)& In__Intsec(c2)  => c1 yielding c2
 @(c1) --d@(c2) /\ d>100 => 

< >  (speeding-up(c1) & slowing-down(c2))

OK/KO

Current Configuration 
– evaluation of atomic 
propositions Meaning of 

atomic 
propositions

Properties 

c1 Execution 
Engine

c2 c3

ci cj cn

Verification 
Engine

Joseph Sifakis - Why is it so hard to make self-driving cars?  - Waymo- March 19, 2021



O
V
E
R
V
I
E
W

30

 Why is it so hard?

 Toward Trustworthy Autonomy 

 Trustworthy Autopilot Design 

 When Self-driving Cars are Safe Enough?

Discussion 

Joseph Sifakis - Why is it so hard to make self-driving cars?  - Waymo- March 19, 2021



Discussion – Two Questions about Neural Networks
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 What Neural Networks Are (Not) Good For?
 The computed function for black and white images is 

Fcd:{0,1} n  {cat, dog}
 How about the function  Feo:{0,1} n  {even, odd} that gives “even” if 

the number of 1 in the input sequence is even and 0 otherwise?
 How about the function Fcorr:{0,1} n  {bug, nobug}  where the input 

is a program?
Sensitivity (robustness) matters !!

 When Neural Nets are explainable? 
 Given a neural net computing a function F(X) = Y , explainability means that it is possible to extract a 

function Fapp e.g. in the form of a program such that Fapp approximates F modulo some similarity relation ~  
∀ X,X’ X’~X  implies Fapp(X’) ~ F(X).
Note that we can check the correctness of Fapp with respect to properties preserved by ~.

 How Fapp can be extracted from F? In principle, by structural analysis, by composing the behaviors of nodes
 Note that  

 Fcd:{0,1} n  {cat, dog} cannot be explainable because “cat” and “dog” is not amenable to formalization
 Fca: {va,ve,d)  {acc,dec}, collision avoidance system, is explainable (relation between quantities) 



Discussion – Human Situation Awareness Cannot be Matched 

To match human-level performance, systems should be able to deal with knowledge of the common sense world.

 Our mind is equipped with a semantic model of the world 
 used to Interpret sensory information and natural language in particular;
 progressively built and automatically updated though learning and reasoning; 
 integrating in a huge network knowledge acquired along lifespan and involving  concepts, cognition rules and 

patterns.
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Discussion – The Superiority of Human Situation Awareness
To match human-level performance, systems should be able to deal with knowledge of the common sense world.

 Our mind is equipped with a semantic model of the world 
 used to Interpret sensory information and natural language in particular;
 progressively built and automatically updated though learning and reasoning; 

 integrating in a huge network knowledge acquired along lifespan and involving  concepts, cognition rulepatterns.

 It is highly improbable that we could ever build such semantic models given their overwhelming complexity - as 
evidenced by the very little progress in semantic analysis of natural languages so far. 

 Human understanding combines: 1) bottom-up reasoning from sensor level  to the semantic model of the mind; 
and 2) top-down  from the semantic network to perception. 

“Intelligence is what you use when you don't know what to do.” Jean Piaget 
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Discussion – Some Conclusions 

 The trustworthy autonomous systems challenge is not only about intelligent agents, it involves equally important 
systems engineering issues.

 Hybrid design could leverage on a solid body of knowledge for safe and efficient decision making and thus 
enhance confidence.
 End-to-end monolithic AI-enabled solutions taking the “brute force way” precluding safety guarantees are 

likely not to be accepted;
 The challenge is linking symbolic and non-symbolic knowledge e.g. sensory information and models of the 

environment.
 Global system validation is achievable only through simulation and testing.

 Realistic and semantically sound modeling  becomes of paramount importance for validation   
 Any technically sound safety evaluation should be model-based e.g. relies on criteria defined on an implicit 

or an explicit system model.

 There is a big gap between automated and autonomous systems – the transition cannot  be progressive: ADAS 
cannot gradually evolve into self-driving systems!!

 Nonetheless, autonomic complexity drastically scales down for enhanced situation awareness (perception) and 
environment predictability

 To reach the vision we need to develop a new scientific and engineering foundation. And this will take some time.
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Thank you

Joseph Sifakis - Why is it so hard to make self-driving cars?  - Waymo- March 19, 2021


	Why is it so hard �to make self-driving cars?�(Trustworthy Autonomous Systems)
	Autonomous systems – Main Characteristics 
	Autonomous systems – For a New Scientific and Engineering Foundation 
	Slide Number 4
	 Why is it so hard? – Autonomous Agent Architecture 
	Why is it so hard? – SAE Autonomy Levels
	Why is it so hard? – Symbiotic Autonomy
	Slide Number 8
	Autopilot Design – Critical Systems Engineering Limitations
	Autopilot Design –Taking the Best from Each 
	Autopilot Design –  Principles 
	Autopilot Design – Hierarchical Semantic Model 
	 Autopilot Design – Hierarchical Architecture 
	Autopilot Design – Risk Management
	Autopilot Design – Risk Analysis Levels
	Autopilot Design – Risk Mitigation: FDIR 
	Autopilot Design – Risk Mitigation: Failure Typology 
	Autopilot Design – Risk Mitigation: Run-time Assurance 
	Autopilot Design – Risk Evaluation: Behavioral Aproach
	Slide Number 20
	When Self-driving Cars are Safe Enough? – The “Miles Argument”
	 When Self-driving Cars are Safe Enough? – Gaps in the State of the Art
	When Self-driving Cars are Safe Enough? – Simulation Key Issues
	 When Self-driving Cars are Safe Enough? – Modeling: DR-BIP 
	 When Self-driving Cars are Safe Enough? – Modeling: DR-BIP
	When Self-driving Cars are Safe Enough? – Simulation Environment 
	When Self-driving Cars are Safe Enough? –  Maps
	When Self-driving Cars are Safe Enough? –  Configuration Logic 
	When Self-driving Cars are Safe Enough?  – Validation: Scenarios (1) 
	Slide Number 30
	Discussion – Two Questions about Neural Networks
	Discussion – Human Situation Awareness Cannot be Matched 
	Discussion – The Superiority of Human Situation Awareness
	Discussion – Some Conclusions 
	Slide Number 35

