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Core of the CPS Discipline

The Core of the Discipline

 Theory: Linking Physicality and 
Computation, in particular unification of 

modeling frameworks  
 Engineering: Rigorous Design of CPS, 

in particular building CPS systems 
from CPS components



Multiscale and Multidomain Model Integration 



Both physics and computing deal with systems  X’= f(X,Y) where 

Linking Physicality and Computation

= - kx

Law: kx0
2 - kx2 = mv2

Physical system models are 
inherently synchronous 
(timed); they are driven by 
uniform laws.

Physics
X’ = dX/dt
X is the current state 
Y is the current input
Variables are functions of time 

Computation models ignore 
physical time; they are driven 
by specific laws defined by 
their designers

while x≠y
do if x>y then x:=x-y 

else y:=y-x

Law: GCD(x,y)=GCD(x0,y0)

X’ is the next state 
X is the current state 
Y is the current input
Discrete variables 

Computing



Linking Physicality and Computation
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 Deals with phenomena  of the 
« real »  physical world 
(transformations of 
matter/energy)
 Focuses mainly on the 
discovery of physical laws.
 Physical systems – Analytic 
models
 Continuous mathematics

 Differential equations -
robustness
 Predictability
 Mature discipline

Physics Computing
 Deals with the representation, 

transformation and 
transmission of information

 Focuses mainly on the 
construction of systems 

 Computing systems –
Machines

 Discrete mathematics – Logic

 Automata, Algorithms, 
Complexity Theory

 Verification, Testing, 
 Young fast evolving discipline



System Correctness 
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Non Trustworthy States

Nominal CorrectnessCorrectness

 Correctness = Nominal Correctness + Resilience
 Nominal Correctness = Nominal Critical Correctness +  Optimization
 Resilience = Fault tolerance + Threat resistance 
 Fault tolerance = Resilience to HW failures, loss of messages, any event that  may 

lead to accidental deviation from nominal behavior 
 Threat resistance = Resilience to attacks or any event that may jeopardize system 

security 
 Trustworthiness = Nominal Critical Correctness + Resilience 



System Correctness 
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Non Trustworthy States

Critical system: Non trustworthy states are forbidden – degraded mode is tolerated 
Mission Critical: Availability required for some period of time – degraded mode is ok if 
possible recovery to trustworthy states
Best effort system: Unavailability accepted if below a threshold.



Languages and Methods
The two pillars of System Design
1. Languages determine the limits: "The limits of my language mean the limits of my world" 
Ludwig Wittgenstein in Tractatus Logico-Philosophicus.
2. Methods that are relations between descriptions in languages determine to what extent 
the design problem can be solved.

Prerequisites for  Design frameworks to guarantee correctness:

 Language coherence:  The languages adequately describe various functional and extra-
functional aspects of the behavior of the designed system, They can be consistently 
combined in the design flow as they share a common semantic model. 

 Trusted Methods: For each method (tool, component) intended to solve a given problem 
and thus meeting a property there exist correct implementations and I know how to 
combine methods to achieve a given result. Quite often we discover that implementations 
of protocols may be flawed e.g. Paxos distributed consensus protocol, cryptographic 
protocols 

Rigorous design: language and method coherence and traceability of requirements 
satisfaction 



Languages and Methods

Natural Language
Logic

Equational Specifications

Programming and Modeling 
Executable languages 

Tools

Checkers

Transformers

Composers

Components

HW

SW

Physical 
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Editors
Design Flow

HW

SW
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Language Coherence – The Language Landscape
Languages are defined by their syntax and  (if possible) their semantics. Formally defined languages can be 
considered as abstract algebras.
In systems engineering we need languages to describe Data, Behavior  and Architecture and their properties. 
The latter are meant to be sets of Data, Behavior  and Architecture, respectively.  If D is the domain of a 
language then 2D is the domain of the corresponding property description language.

 Data domains include basic domains such as integers, boolean, real as well as structured data . The latter 
can be used to define functions and relations. In systems engineering particular types of data are signals and 
events. Signals are functions from some ordered set e.g. integers, reals into a set of values. Events are state 
changes as discussed below.

Behavior domains are particular data domains involving relations on states. Behavior can be specified either 
as a transition system relation between states or as a relation between signals. In the former case, given a 
state the transition relation defines the set of all its successors by executing one step. In the latter case, one or 
more  transition relations are implicitly specified by systems of equations involving signal variables. 

Architecture domains express coordination constraints between components. A component encapsulates 
behavior and is equipped with ports  through which it can interact with other components.  An architecture is 
used to constraint the behavior of a set of components. 

Properties are described using logic-based formalisms. For plain data domains we can define predicate logics 
of different kinds. For behavior domains there exist program logics, temporal logics that involve modal 
operators to ease specification. For architecture domains logic may be used to characterize families of 
architectures. 



Language Coherence – The Language Landscape
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Language Coherence – The Language Landscape

BEHAVIOR ARCHITECTURE

Architecture 
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Language Coherence – Integration in a Design Flow
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A Panorama of Methods

A Method is a relation between languages – It brings solutions to a problem. A method may be fully automated, 
partially automated or non automated. 
The composition of methods is a method.

Design is a method for building an implementation from requirements.   It involves the construction of system 
descriptions  following a flow that combines different methods. 

We need trusted generic (independent from the particular system) methods that that are embodied in
Tools implement methods used to solve generic problems and as a rule, they are not integrated in systems. 
They are used to produce knowledge about systems.
 Components implement methods used to build the system by applying correct-by-construction techniques

For given application software, model of execution platform and model of external environment there are three 
main system design problems: 
 Resource awareness including scheduling, resource management techniques with adaptive mechanisms. 
 Coherent and efficient execution in particular for distributed platforms with mobility and dynamically 

changing structure  
 Knowledge-based techniques for predictability and efficiency to cope with uncertainty and partial 

information. 

The problem is how by using tools, components and predefined architectures, patterns etc to solve these 
problems 



A Panorama of Methods/Tools

Verification 
Method

Behavior Model

Behavior Property
to be checked

Diagnostics

Synthesis
Method

Behavior Model Behavior Model
meeting the property

Behavior Property
to be enforced

Testing 
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Behavior 
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Model

Diagnostics

System 
Under Test
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Components 
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A1(C1, ., Cn)|=P1
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A1⊕A2(C1, ., Cn)|=P1∧P2
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Core System Design Issues 

MODELING/PROGRAMMING  TOOLS
Data Behavior Structure 

LOGIC-BASED LANGUAGES
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Core System Design Issues 

Application 
SW 

Execution 
Platform

External 
Environment

Distributed Algorithms 

EXECUTION AND  COORDINATION MECHANISMS 
(Mainly Trustworthiness)

Mobile, Configurable Architectures

data analytics  

Learning 
Statistic inference

Coordination Mechanisms

KNOWLEDGE 
(predictability for trustworthiness and optimization) 

DESIGN-TIME RUN-TIME
Invariants 

Behavioral 
Abstractions  

Scheduling 

Resource-Aware  Architecture 

Optimization

RESOURCE-AWARE MANAGEMENT (Optimization)

Monitoring/State estimation

Coherence Protocols

 Checking and 
Analysis Tools 
(verification, 
testing, 
validation)

 Modeling/
Programming  
Tools



Design-time vs. Run-time Knowledge

Knowledge is information that is a truthful relation in some theory that can be used to 
understand and/or predict event or can be used to solve a problem. 
Distinction between a priori and a posteriori knowledge. A priori knowledge is independent 
from experience. It is absolute knowledge modulo the validity of the axioms of the underlying 
theory. A posteriori knowledge dependents an observation and experiments. 

Knowledge may be declarative or procedural. Declarative knowledge is properties (very often 
invariants) in a logic or preorder relations between models. Procedural knowledge can be 
used to compute functions (decision procedure in logic, programs, etc.).

The purpose of design is to build an artifact such that our knowledge about it implies the 
requirements or their formalization as properties. 

A method embodies knowledge. It may be either fully automated or semi-automatic or even 
non automated. It is used to create new knowledge.

Design-time Knowledge: The developed models and their properties – the system is correct if 
the knowledge about the system implies the requirements. How much can be established at 
design time?? 
Run-time Knowledge: Observed relationships and measurements  to complement design time 
knowledge. It can be used to enforce properties (requirements) that cannot be implied from 
design-time knowledge. 



Modeling of CPS
 Structural Equational Modelling of Physical Systems
 Semantic issues 
 Hybrid Models for Cyber Physical Systems

Three Main Problems

Discretization Techniques for Executability
 Discretization Algorithms
 Dataflow Models with Discrete Events 

Execution and Implementation Techniques  
 Modular Code Generation 
 Co-simulation techniques  
 Direct code generation from networks of physical 
components
 Analysis and Synthesis for Hybrid Dataflow Systems



Modeling CPS – Structural Equational Modeling 

 A network of physical components is built from a limited number of types of components C 
and connectors K.  

 Each component has ports p, q, r  and associated general state variables Vp, Vq, Vr
 The network is a hypergraph: vertices are component ports and edges are connectors (sets 

of ports)
 Component C has a characteristic equation of the form EC(Vp,Vq). 
 Connector K relating ports p,q, .. ,r  has equations of the form EK(Vp,Vq ,..., Vr) –

equations may be constrained in general.

Declarative compositionality : The meaning of a network with sets of components {Ci} i∈I and 
set of connectors {Kj} j∈J is the union {ECi} i∈I∪ {EKj} j∈J.

Connector K: EK(Vp,Vq,Vr,Vs)

Component C

C1

C2

C4C3

K3

K1

Network of physical components 

p,Vp q,Vq

p,Vp

q,Vq s,Vs

r,Vr

K

Component C: EC(Vp,Vq)

K2



Modeling CPS – Structural Equational Modeling 

Problems addressed:

 Given a physical system described as a network of interacting elements, is there a 
systematic approach to get faithful equational models?

 What is the value of techniques such as Bond Graphs, Linear Graphs?

 Is there a concept of faithfulness of modeling and how it can be formalized ?

 Modular specification – meaningful composition of equational specifications 

 Abstraction and reduction techniques for equational models 

C

L

R C vC’= iC
vR = R iR
L iL’ = vL

vC =vC1 – vC2

vR =vR1 – vR2

vL =vL1 – vL2

iC= iR = iL
vC1 = vR2 , vC2 = vL1 , vL2 = vR1



Cyber physical Systems – Modularity 

p Vp

q Vq

M1

x Vx

r Vr

s Vs

M2

y Vy

p Vp

q Vq

M1 ⊕M2 [Vp=Vr; Vq=Vs]

x Vx

r Vr

s Vs

y Vy

If M1and M2 
are well-formed 
is the resulting
component 
well-formed?



Modeling CPS – Zeno behavior

One difficulty in studying semantics of CPS is the existence of converging sequences 
of discrete events

 For a ball falling of an attitude h0 and losing a percentage of its speed due to for non 
elastic shock with the ground

 The physical model  is described by : v’ = - g, x’=v, vi+1=0.8 vi, ti+1- ti = (2/g)vi

 lim tn→∞ (tn-t0) is bounded, so time will not exceed the Zeno point 

Simulators with fixed integration step may
 either overshoot the limit 
 or not reach convergence
Proving nonZenoness is undecidable
 requires discovery and application of  

an induction hypothesis 
 see results for the verification of 

nonZenoness for timed automata

We need practicable theory to detect Zeno 
behavior 



Modeling CPS – Continuous Data Flow Models 
From an equational specification of a PS a Data Flow Network (block diagram) may be derived 
 The operators transform input flows into output flows – they are intrinsically parallel
 Integrators have an additional initialization input that determines the initial value of the 

integrated variable.
 Translation into data flow networks is the first step toward discretization

C

L

R

RLC Circuit Continuous data flow model

1/C

R

⊕-1/L

i

vR

vC

v’C

i’

-

vC0

iL0 -

∫

∫

m d
2X

dt2 =- kx

Mass-spring system

x’0

- k/m

x0

x’’ x

x’

Continuous data flow model

∫ ∫



Modeling CPS – Continuous Data Flow Models 

With any system of explicit DE  of the form   {vi’ = fi (V, X)} i=1..n  we can trivially associate a data flow 
network with n integration loops. The construction is compositional and to some extent incremental  

Continuous data flow models for 
v1’= f1(x, v1,v2)= ax+bv1+cx2    v2’=f2(x, v1,v2)= dx+ev1+fv2 

v’1

start(v10)

∫

∫

f1(x,v1,v2)

f2(x,v1,v2)
v’2

v1

v2

x

start(v20)
start(v20)

start(v10)

a

c

⊕

b

d

f

⊕

e

v’1

v20

∫

∫
v’2

v1

v2

x

f1

f2



Modeling CPS – Hybrid Models 

HYBRID AUTOMATON

y’=f1(x,y) y’=f2(x,y) 

Ga(y), y:=Ha (y) 

Gb(y), y:=Hb (y) 

b a

Hybrid Automata vs. Continuous Data Flow models with When operators 

x
y∫f1(x,y)dyb

x
∫f2(x,y)dy

y
a

start(Ha(y))

stop

When(Ga Ha)

HYBRID DATA FLOW NETWORK

start(Hb(y))

stop

When(Gb Hb)



Discretization – Discretization Algorithms 

Define notions:
 what can be a measure of quality of approximation? 
 how can be defined a notion of safety of approximation -- we do not discard 
when integrating critical discrete events

Find easy-to-check criteria for executability: 
 the model can be assigned a causality relation in a unique manner
 the model does not involve closed loops without integrators.

Learn from numerical analysis techniques. Numerical solvers combine different 
algorithms:

 some numerical integration schemas for stiff problems,
 of different consistency order,  with the ability to increase the order according 

to the local error,
 some local error estimator, usually using formulae embedded in the above 

schema,
 a time step size adaption heuristics that keeps the local error below the  

tolerance, and
 some event detection and “hot” restart mechanism to deal with reset 

equations.



Discretization – Discrete Data Flow Models

 By applying the Euler method, the solution of 
y’(t)=f(t,y(t)) with y(t0) =y0

can be approximated by the iterative computation yn+1 = yn+h f(tn ,yn) involving a time 
sequence tn+1 = tn+h ti

 A discretized system can be obtained by replacing each integrator by a discrete iterative 
program that applies a specific discretization technique.

 A discrete data-flow component has input and output data ports and an event port act. The 
event act triggers the cyclic computation of f. It plays the role of a logical clock. 

∫f(x,y)dyx y

start(y0)

Continuous dataflow model for 
y’=f(x,y) with y=y0

xn

start(y0)

yn+1

yn

yn+hf(yn,xn)

Unit delay

act

Discrete dataflow model



Discretization – Discrete Data Flow Models

Discrete data-flow network:
 the interconnection of discrete data flow components. 
 data output ports of a component are connected to data input ports of other components. 
 act events can either external inputs or generated by using specific functions that 

generate events from data streams. 

G

H

F

Discrete data flow network

actF actG

actHF
x
y

z

act

Discrete dataflow component

Are purely functional and do not directly support discrete events and non determinism e.g. 
Lustre, Simulink

Discrete data flow components:
 have input and output data ports and a discrete event act . 
 are characterized by a function F that transforms cyclically input data values into output 

values. 
 the event act plays the role of a logical clock. At each step t the inputs x and y are 

updated and an output z is produced  -- z(t) =F(x(t),y(t))



Discretization – Discretized Hybrid Data Flow Models

 Are obtained by replacing each integrator in a hybrid data flow network by a 
discrete iterative program that applies a specific discretization technique. 

 Discrete data flow components have in addition to act the external events start
and stop. 

∫f(x,y)dyx y

start(y0)

xn

start(y0)

yn+1

yn

yn+hf(yn,xn)

Unit delay

act

Hybrid data flow  model Discretized hybrid data flow model 

stop

stop



Mathematically simple does not mean computationally simple!
 The continuous data flow model may be sensitive to input changes even if they occur at very 

close times 
 There can be an infinity of changes in a finite interval and this cannot be modeled 

computationally. There is no finite state computational model equivalent to a unit delay! 

Discretization – Synchrony Assumption

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x↑ x↓

y(t)
y↑ y↓

1 s x↑ τ:=0

x↓ τ:=0

τ=1
y↑

y=0 y=0

y=1y=1

τ=1
y↓

Equivalent timed automaton, provided 
that the distance between two 
consecutive input changes is more 
than 1sec – (synchrony assumption)



Execution and Implementation

EMBEDDING

Apply embedding techniques to Discretized Hybrid Data Flow models (with start and 
stop events)

 modular code generation allowing separate compilation of components. 

actF actH

actG actI

C(actF,actG,actH,actI,actJ)

actJ

G

F

J

H

I

Synchronou
s 

Coordinator 

CF

CG

CJ

CH

CI



Execution and Implementation – Co-Simulation

Co-simulation is considered a more practical way of dealing with model coupling

 It consists in coordinating simulators, each subsystem model being 
equipped with its own (and a priori best fitted) numerical solver, and a 
limited set of signals are exchanged at pre-defined macro-time steps 

 The simulation tools should share a common semantic representation –
what is the minimal common sematic representation that is sufficient for 
sound integration? 



Execution and Implementation – Direct Code Generation 

Hybrid 
Dataflow Network

∫f

start stop

∫g

start stop

Discrete Event 
Dataflow Network

start stop

start stop

C1

C2

C3

Network of  Physical 
Components 

act

act

F

G

MF MG Executable 
Model 
(Code)

Coordinator 
EMBEDDING

≈

MC1

MC2

MC3

Executable 
Model 
(Code)

Coordinator 

EMBEDDING

The rule of the simulation that I would like to have is that the number of computer elements 
required to simulate a large physical system is only proportional to the space-time-volume 
of the physical system. I don't want to have an explosion. That is, if you say I want to 
explain this much physics, I can do it exactly and I need a certain size computer. If 
doubling the volume of space and time means I'll need an exponentially larger computer, I 
consider that against the rules.

Richard Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982



Natural vs. Physical Computing 

The rule of the simulation that I would like to have is that the number of computer 
elements required to simulate a large physical system is only proportional to the space-
time-volume of the physical system. I don't want to have an explosion. That is, if you say I 
want to explain this much physics, I can do it exactly and I need a certain size computer. 
If doubling the volume of space and time means I'll need an exponentially larger 
computer, I consider that against the rules.

Richard Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982

Compositional computability 
Assuming that the physical world is discrete is it possible to compute the behavior of a 
network of physical components by replacing the components by the corresponding 
programs simulating their behavior and the connectors by protocols?
If so, with what precision and what communication overhead?



DECYPHerS – Workpackages



DECYPHerS – Developed Tools 

OpenModelica (SICSE)

HybridSAL (SRI)

Imagine.Lab Amesim (SISW)

TAG Machine Simulator (UNITN)

RT-BIP (UGA)
TIMES (UU)

Modelica

Hybrid Automata

Hybrid Equational Models

ERODE (IMT)
CRNReducer (IMT)

Dataflow Languages

TAG Machines

Simulation /
Implementation

Code

Discrete-event Data Flow Models Timed/Event-Driven Models

Timed Automata

BIP

Model Reduction
Model Abstraction

SynchronousBIP (UGA)

Implementation

(Co-)Simulation

Model.CONNECT (AVL)

FMI

RT-DFinder (UGA)
UPPAAL (UU)
EFSMT (FOR)

Analysis and Synthesis

Architecture Synthesis (UNITN)

Linker (SISW)Commercial tools: Simulink, IBM Rhapsody…
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