
Core Research Topics for CPS

Workshop on “Game Changing and
Controversial Topics in Cyber Physical Systems”
Budapest University of Technology and
Economics
April 15, 2016

Joseph Sifakis
EPFL
The BIP team, Verimag

Is CPS a Discipline in its Own Right?

Core of
the

Discipline?

Smart
Buildings

Smart
Transport

Sm
art

Factories

Sm
ar

t
Ag

ric
ul

tu
re

Core of the CPS Discipline

The Core of the Discipline

 Theory: Linking Physicality and
Computation, in particular unification of

modeling frameworks
 Engineering: Rigorous Design of CPS,

in particular building CPS systems
from CPS components

Multiscale and Multidomain Model Integration

Both physics and computing deal with systems X’= f(X,Y) where

Linking Physicality and Computation

= - kx

Law: kx0
2 - kx2 = mv2

Physical system models are
inherently synchronous
(timed); they are driven by
uniform laws.

Physics
X’ = dX/dt
X is the current state
Y is the current input
Variables are functions of time

Computation models ignore
physical time; they are driven
by specific laws defined by
their designers

while x≠y
do if x>y then x:=x-y

else y:=y-x

Law: GCD(x,y)=GCD(x0,y0)

X’ is the next state
X is the current state
Y is the current input
Discrete variables

Computing

Linking Physicality and Computation

6

 Deals with phenomena of the
« real » physical world
(transformations of
matter/energy)
 Focuses mainly on the
discovery of physical laws.
 Physical systems – Analytic
models
 Continuous mathematics

 Differential equations -
robustness
 Predictability
 Mature discipline

Physics Computing
 Deals with the representation,

transformation and
transmission of information

 Focuses mainly on the
construction of systems

 Computing systems –
Machines

 Discrete mathematics – Logic

 Automata, Algorithms,
Complexity Theory

 Verification, Testing,
 Young fast evolving discipline

System Correctness

7

Non Trustworthy States

Nominal CorrectnessCorrectness

 Correctness = Nominal Correctness + Resilience
 Nominal Correctness = Nominal Critical Correctness + Optimization
 Resilience = Fault tolerance + Threat resistance
 Fault tolerance = Resilience to HW failures, loss of messages, any event that may

lead to accidental deviation from nominal behavior
 Threat resistance = Resilience to attacks or any event that may jeopardize system

security
 Trustworthiness = Nominal Critical Correctness + Resilience

System Correctness

8

Non Trustworthy States

Critical system: Non trustworthy states are forbidden – degraded mode is tolerated
Mission Critical: Availability required for some period of time – degraded mode is ok if
possible recovery to trustworthy states
Best effort system: Unavailability accepted if below a threshold.

Languages and Methods
The two pillars of System Design
1. Languages determine the limits: "The limits of my language mean the limits of my world"
Ludwig Wittgenstein in Tractatus Logico-Philosophicus.
2. Methods that are relations between descriptions in languages determine to what extent
the design problem can be solved.

Prerequisites for Design frameworks to guarantee correctness:

 Language coherence: The languages adequately describe various functional and extra-
functional aspects of the behavior of the designed system, They can be consistently
combined in the design flow as they share a common semantic model.

 Trusted Methods: For each method (tool, component) intended to solve a given problem
and thus meeting a property there exist correct implementations and I know how to
combine methods to achieve a given result. Quite often we discover that implementations
of protocols may be flawed e.g. Paxos distributed consensus protocol, cryptographic
protocols

Rigorous design: language and method coherence and traceability of requirements
satisfaction

Languages and Methods

Natural Language
Logic

Equational Specifications

Programming and Modeling
Executable languages

Tools

Checkers

Transformers

Composers

Components

HW

SW

Physical

Languages

Editors
Design Flow

HW

SW

Physical

Language Coherence – The Language Landscape
Languages are defined by their syntax and (if possible) their semantics. Formally defined languages can be
considered as abstract algebras.
In systems engineering we need languages to describe Data, Behavior and Architecture and their properties.
The latter are meant to be sets of Data, Behavior and Architecture, respectively. If D is the domain of a
language then 2D is the domain of the corresponding property description language.

 Data domains include basic domains such as integers, boolean, real as well as structured data . The latter
can be used to define functions and relations. In systems engineering particular types of data are signals and
events. Signals are functions from some ordered set e.g. integers, reals into a set of values. Events are state
changes as discussed below.

Behavior domains are particular data domains involving relations on states. Behavior can be specified either
as a transition system relation between states or as a relation between signals. In the former case, given a
state the transition relation defines the set of all its successors by executing one step. In the latter case, one or
more transition relations are implicitly specified by systems of equations involving signal variables.

Architecture domains express coordination constraints between components. A component encapsulates
behavior and is equipped with ports through which it can interact with other components. An architecture is
used to constraint the behavior of a set of components.

Properties are described using logic-based formalisms. For plain data domains we can define predicate logics
of different kinds. For behavior domains there exist program logics, temporal logics that involve modal
operators to ease specification. For architecture domains logic may be used to characterize families of
architectures.

Language Coherence – The Language Landscape

DATA DOMAIN

(Simple Data,
Signals)

2DD

Predicate
Logic

2^

2BD

Program
Logic

2AD

Configuration
Logic

BEHAVIOR
DOMAIN

(Transition Systems,
Equational Systems)

ARCHITECTURE
DOMAIN

(Connectors, Glue
operators)

×

2^ 2^

SEMANTIC DOMAINS

LOGIC-BASED LANGUAGES

Language Coherence – The Language Landscape

BEHAVIOR ARCHITECTURE

Architecture
Styles

General
Purpose
Programming
Languages

Imperative:
Connector-
based
Architectures

Interaction
Logics
– dynamic

architectures

LANGUAGES

Differential
equations
DAEs
Continuous
Data Flow
Languages

M
O

D
EL

IN
G

Resource-
aware
models

Deductive
databases
Abstract
Data Types

Hybrid
Modeling
languages

Discrete
Data Flow
languages

DATA

LO
G

IC
-B

AS
ED

Query
programming

Logic
Programming
Temporal Logic
Program logic

PR
O

G
R

AM
M

IN
G

Real-time
programming Architecture

Description
LanguagesStatecharts

Message
Charts

Temporal
Database

Spatial
Database

UML, SysML, AADL
DOMAIN SPECIFIC LANGUAGES

Class
diagrams
OCL

Database
Models

Language Coherence – Integration in a Design Flow

Physical
Language/Knowledge

Logical-Mathematical
Language/Knowledge

Electromechanical
Systems HW Platforms

A
po

st
er

io
ri

kn
ow

le
dg

e

Material World

Conceptual World

A
po

st
er

io
ri

kn
ow

le
dg

e ⊕Specification
Language

Programming
Language

⊕

HW
Modeling Language ⊕Physical Systems

Modeling Language⊕

Requirements in Natural
Language/Declarative

Requirements in Natural
Language/Procedural

CPS modeling
Language ⊕

Implementation
Language

A Panorama of Methods

A Method is a relation between languages – It brings solutions to a problem. A method may be fully automated,
partially automated or non automated.
The composition of methods is a method.

Design is a method for building an implementation from requirements. It involves the construction of system
descriptions following a flow that combines different methods.

We need trusted generic (independent from the particular system) methods that that are embodied in
Tools implement methods used to solve generic problems and as a rule, they are not integrated in systems.
They are used to produce knowledge about systems.
 Components implement methods used to build the system by applying correct-by-construction techniques

For given application software, model of execution platform and model of external environment there are three
main system design problems:
 Resource awareness including scheduling, resource management techniques with adaptive mechanisms.
 Coherent and efficient execution in particular for distributed platforms with mobility and dynamically

changing structure
 Knowledge-based techniques for predictability and efficiency to cope with uncertainty and partial

information.

The problem is how by using tools, components and predefined architectures, patterns etc to solve these
problems

A Panorama of Methods/Tools

Verification
Method

Behavior Model

Behavior Property
to be checked

Diagnostics

Synthesis
Method

Behavior Model Behavior Model
meeting the property

Behavior Property
to be enforced

Testing
Method

Behavior
Reference
Model

Diagnostics

System
Under Test

Composition
Method

Components
C1, .., Cn

A[C1, .., Cn]
Component
meeting the
property P

Architecture A
enforcing property P

Formal
SpecificationRequirements

in Natural Language

Properties

Composability
Method

A1(C1, ., Cn)|=P1

A2(C1, ., Cn)|=P2

A1⊕A2(C1, ., Cn)|=P1∧P2

Formal PS
Modeling Network of EM

Components

Equational model

Code
Generation
Method

Source code
Implementation

Directives

TRANSFORMERS

CHECKERS

COMPOSERS

Core System Design Issues

MODELING/PROGRAMMING TOOLS
Data Behavior Structure

LOGIC-BASED LANGUAGES

Application
SW

Execution
Platform

External
Environment

REQUIREMENTS

⇒

SYSTEM PROPERTIES⊕

Trusted
Components

 Trusted
Architectures

 Compositionality
& Composability
Rules

Trusted Tools
 Checking and

Analysis Tools
(verification,
testing,
validation)

 Compilers, code
generators

KNOWLEDGE

EXECUTION AND COORDINATION MECHANISMS

RESOURCE-AWARE MANAGEMENT

Core System Design Issues

Application
SW

Execution
Platform

External
Environment

Distributed Algorithms

EXECUTION AND COORDINATION MECHANISMS
(Mainly Trustworthiness)

Mobile, Configurable Architectures

data analytics

Learning
Statistic inference

Coordination Mechanisms

KNOWLEDGE
(predictability for trustworthiness and optimization)

DESIGN-TIME RUN-TIME
Invariants

Behavioral
Abstractions

Scheduling

Resource-Aware Architecture

Optimization

RESOURCE-AWARE MANAGEMENT (Optimization)

Monitoring/State estimation

Coherence Protocols

 Checking and
Analysis Tools
(verification,
testing,
validation)

 Modeling/
Programming
Tools

Design-time vs. Run-time Knowledge

Knowledge is information that is a truthful relation in some theory that can be used to
understand and/or predict event or can be used to solve a problem.
Distinction between a priori and a posteriori knowledge. A priori knowledge is independent
from experience. It is absolute knowledge modulo the validity of the axioms of the underlying
theory. A posteriori knowledge dependents an observation and experiments.

Knowledge may be declarative or procedural. Declarative knowledge is properties (very often
invariants) in a logic or preorder relations between models. Procedural knowledge can be
used to compute functions (decision procedure in logic, programs, etc.).

The purpose of design is to build an artifact such that our knowledge about it implies the
requirements or their formalization as properties.

A method embodies knowledge. It may be either fully automated or semi-automatic or even
non automated. It is used to create new knowledge.

Design-time Knowledge: The developed models and their properties – the system is correct if
the knowledge about the system implies the requirements. How much can be established at
design time??
Run-time Knowledge: Observed relationships and measurements to complement design time
knowledge. It can be used to enforce properties (requirements) that cannot be implied from
design-time knowledge.

Modeling of CPS
 Structural Equational Modelling of Physical Systems
 Semantic issues
 Hybrid Models for Cyber Physical Systems

Three Main Problems

Discretization Techniques for Executability
 Discretization Algorithms
 Dataflow Models with Discrete Events

Execution and Implementation Techniques
 Modular Code Generation
 Co-simulation techniques
 Direct code generation from networks of physical
components
 Analysis and Synthesis for Hybrid Dataflow Systems

Modeling CPS – Structural Equational Modeling

 A network of physical components is built from a limited number of types of components C
and connectors K.

 Each component has ports p, q, r and associated general state variables Vp, Vq, Vr
 The network is a hypergraph: vertices are component ports and edges are connectors (sets

of ports)
 Component C has a characteristic equation of the form EC(Vp,Vq).
 Connector K relating ports p,q, .. ,r has equations of the form EK(Vp,Vq ,..., Vr) –

equations may be constrained in general.

Declarative compositionality : The meaning of a network with sets of components {Ci} i∈I and
set of connectors {Kj} j∈J is the union {ECi} i∈I∪ {EKj} j∈J.

Connector K: EK(Vp,Vq,Vr,Vs)

Component C

C1

C2

C4C3

K3

K1

Network of physical components

p,Vp q,Vq

p,Vp

q,Vq s,Vs

r,Vr

K

Component C: EC(Vp,Vq)

K2

Modeling CPS – Structural Equational Modeling

Problems addressed:

 Given a physical system described as a network of interacting elements, is there a
systematic approach to get faithful equational models?

 What is the value of techniques such as Bond Graphs, Linear Graphs?

 Is there a concept of faithfulness of modeling and how it can be formalized ?

 Modular specification – meaningful composition of equational specifications

 Abstraction and reduction techniques for equational models

C

L

R C vC’= iC
vR = R iR
L iL’ = vL

vC =vC1 – vC2

vR =vR1 – vR2

vL =vL1 – vL2

iC= iR = iL
vC1 = vR2 , vC2 = vL1 , vL2 = vR1

Cyber physical Systems – Modularity

p Vp

q Vq

M1

x Vx

r Vr

s Vs

M2

y Vy

p Vp

q Vq

M1 ⊕M2 [Vp=Vr; Vq=Vs]

x Vx

r Vr

s Vs

y Vy

If M1and M2
are well-formed
is the resulting
component
well-formed?

Modeling CPS – Zeno behavior

One difficulty in studying semantics of CPS is the existence of converging sequences
of discrete events

 For a ball falling of an attitude h0 and losing a percentage of its speed due to for non
elastic shock with the ground

 The physical model is described by : v’ = - g, x’=v, vi+1=0.8 vi, ti+1- ti = (2/g)vi

 lim tn→∞ (tn-t0) is bounded, so time will not exceed the Zeno point

Simulators with fixed integration step may
 either overshoot the limit
 or not reach convergence
Proving nonZenoness is undecidable
 requires discovery and application of

an induction hypothesis
 see results for the verification of

nonZenoness for timed automata

We need practicable theory to detect Zeno
behavior

Modeling CPS – Continuous Data Flow Models
From an equational specification of a PS a Data Flow Network (block diagram) may be derived
 The operators transform input flows into output flows – they are intrinsically parallel
 Integrators have an additional initialization input that determines the initial value of the

integrated variable.
 Translation into data flow networks is the first step toward discretization

C

L

R

RLC Circuit Continuous data flow model

1/C

R

⊕-1/L

i

vR

vC

v’C

i’

-

vC0

iL0 -

∫

∫

m d
2X

dt2 =- kx

Mass-spring system

x’0

- k/m

x0

x’’ x

x’

Continuous data flow model

∫ ∫

Modeling CPS – Continuous Data Flow Models

With any system of explicit DE of the form {vi’ = fi (V, X)} i=1..n we can trivially associate a data flow
network with n integration loops. The construction is compositional and to some extent incremental

Continuous data flow models for
v1’= f1(x, v1,v2)= ax+bv1+cx2 v2’=f2(x, v1,v2)= dx+ev1+fv2

v’1

start(v10)

∫

∫

f1(x,v1,v2)

f2(x,v1,v2)
v’2

v1

v2

x

start(v20)
start(v20)

start(v10)

a

c

⊕

b

d

f

⊕

e

v’1

v20

∫

∫
v’2

v1

v2

x

f1

f2

Modeling CPS – Hybrid Models

HYBRID AUTOMATON

y’=f1(x,y) y’=f2(x,y)

Ga(y), y:=Ha (y)

Gb(y), y:=Hb (y)

b a

Hybrid Automata vs. Continuous Data Flow models with When operators

x
y∫f1(x,y)dyb

x
∫f2(x,y)dy

y
a

start(Ha(y))

stop

When(Ga Ha)

HYBRID DATA FLOW NETWORK

start(Hb(y))

stop

When(Gb Hb)

Discretization – Discretization Algorithms

Define notions:
 what can be a measure of quality of approximation?
 how can be defined a notion of safety of approximation -- we do not discard
when integrating critical discrete events

Find easy-to-check criteria for executability:
 the model can be assigned a causality relation in a unique manner
 the model does not involve closed loops without integrators.

Learn from numerical analysis techniques. Numerical solvers combine different
algorithms:

 some numerical integration schemas for stiff problems,
 of different consistency order, with the ability to increase the order according

to the local error,
 some local error estimator, usually using formulae embedded in the above

schema,
 a time step size adaption heuristics that keeps the local error below the

tolerance, and
 some event detection and “hot” restart mechanism to deal with reset

equations.

Discretization – Discrete Data Flow Models

 By applying the Euler method, the solution of
y’(t)=f(t,y(t)) with y(t0) =y0

can be approximated by the iterative computation yn+1 = yn+h f(tn ,yn) involving a time
sequence tn+1 = tn+h ti

 A discretized system can be obtained by replacing each integrator by a discrete iterative
program that applies a specific discretization technique.

 A discrete data-flow component has input and output data ports and an event port act. The
event act triggers the cyclic computation of f. It plays the role of a logical clock.

∫f(x,y)dyx y

start(y0)

Continuous dataflow model for
y’=f(x,y) with y=y0

xn

start(y0)

yn+1

yn

yn+hf(yn,xn)

Unit delay

act

Discrete dataflow model

Discretization – Discrete Data Flow Models

Discrete data-flow network:
 the interconnection of discrete data flow components.
 data output ports of a component are connected to data input ports of other components.
 act events can either external inputs or generated by using specific functions that

generate events from data streams.

G

H

F

Discrete data flow network

actF actG

actHF
x
y

z

act

Discrete dataflow component

Are purely functional and do not directly support discrete events and non determinism e.g.
Lustre, Simulink

Discrete data flow components:
 have input and output data ports and a discrete event act .
 are characterized by a function F that transforms cyclically input data values into output

values.
 the event act plays the role of a logical clock. At each step t the inputs x and y are

updated and an output z is produced -- z(t) =F(x(t),y(t))

Discretization – Discretized Hybrid Data Flow Models

 Are obtained by replacing each integrator in a hybrid data flow network by a
discrete iterative program that applies a specific discretization technique.

 Discrete data flow components have in addition to act the external events start
and stop.

∫f(x,y)dyx y

start(y0)

xn

start(y0)

yn+1

yn

yn+hf(yn,xn)

Unit delay

act

Hybrid data flow model Discretized hybrid data flow model

stop

stop

Mathematically simple does not mean computationally simple!
 The continuous data flow model may be sensitive to input changes even if they occur at very

close times
 There can be an infinity of changes in a finite interval and this cannot be modeled

computationally. There is no finite state computational model equivalent to a unit delay!

Discretization – Synchrony Assumption

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x↑ x↓

y(t)
y↑ y↓

1 s x↑ τ:=0

x↓ τ:=0

τ=1
y↑

y=0 y=0

y=1y=1

τ=1
y↓

Equivalent timed automaton, provided
that the distance between two
consecutive input changes is more
than 1sec – (synchrony assumption)

Execution and Implementation

EMBEDDING

Apply embedding techniques to Discretized Hybrid Data Flow models (with start and
stop events)

 modular code generation allowing separate compilation of components.

actF actH

actG actI

C(actF,actG,actH,actI,actJ)

actJ

G

F

J

H

I

Synchronou
s

Coordinator

CF

CG

CJ

CH

CI

Execution and Implementation – Co-Simulation

Co-simulation is considered a more practical way of dealing with model coupling

 It consists in coordinating simulators, each subsystem model being
equipped with its own (and a priori best fitted) numerical solver, and a
limited set of signals are exchanged at pre-defined macro-time steps

 The simulation tools should share a common semantic representation –
what is the minimal common sematic representation that is sufficient for
sound integration?

Execution and Implementation – Direct Code Generation

Hybrid
Dataflow Network

∫f

start stop

∫g

start stop

Discrete Event
Dataflow Network

start stop

start stop

C1

C2

C3

Network of Physical
Components

act

act

F

G

MF MG Executable
Model
(Code)

Coordinator
EMBEDDING

≈

MC1

MC2

MC3

Executable
Model
(Code)

Coordinator

EMBEDDING

The rule of the simulation that I would like to have is that the number of computer elements
required to simulate a large physical system is only proportional to the space-time-volume
of the physical system. I don't want to have an explosion. That is, if you say I want to
explain this much physics, I can do it exactly and I need a certain size computer. If
doubling the volume of space and time means I'll need an exponentially larger computer, I
consider that against the rules.

Richard Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982

Natural vs. Physical Computing

The rule of the simulation that I would like to have is that the number of computer
elements required to simulate a large physical system is only proportional to the space-
time-volume of the physical system. I don't want to have an explosion. That is, if you say I
want to explain this much physics, I can do it exactly and I need a certain size computer.
If doubling the volume of space and time means I'll need an exponentially larger
computer, I consider that against the rules.

Richard Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982

Compositional computability
Assuming that the physical world is discrete is it possible to compute the behavior of a
network of physical components by replacing the components by the corresponding
programs simulating their behavior and the connectors by protocols?
If so, with what precision and what communication overhead?

DECYPHerS – Workpackages

DECYPHerS – Developed Tools

OpenModelica (SICSE)

HybridSAL (SRI)

Imagine.Lab Amesim (SISW)

TAG Machine Simulator (UNITN)

RT-BIP (UGA)
TIMES (UU)

Modelica

Hybrid Automata

Hybrid Equational Models

ERODE (IMT)
CRNReducer (IMT)

Dataflow Languages

TAG Machines

Simulation /
Implementation

Code

Discrete-event Data Flow Models Timed/Event-Driven Models

Timed Automata

BIP

Model Reduction
Model Abstraction

SynchronousBIP (UGA)

Implementation

(Co-)Simulation

Model.CONNECT (AVL)

FMI

RT-DFinder (UGA)
UPPAAL (UU)
EFSMT (FOR)

Analysis and Synthesis

Architecture Synthesis (UNITN)

Linker (SISW)Commercial tools: Simulink, IBM Rhapsody…

	Core Research Topics for CPS��
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Linking Physicality and Computation
	System Correctness
	System Correctness
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Modeling CPS – Structural Equational Modeling
	Modeling CPS – Structural Equational Modeling
	Cyber physical Systems – Modularity
	Modeling CPS – Zeno behavior
	Modeling CPS – Continuous Data Flow Models
	Modeling CPS – Continuous Data Flow Models
	Slide Number 27
	Discretization – Discretization Algorithms
	Discretization – Discrete Data Flow Models
	Discretization – Discrete Data Flow Models
	Discretization – Discretized Hybrid Data Flow Models
	Discretization – Synchrony Assumption
	Execution and Implementation
	Slide Number 34
	Execution and Implementation – Direct Code Generation
	Natural vs. Physical Computing
	Slide Number 37
	 DECYPHerS – Developed Tools

