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From Programs to Systems — The Evolution of IST

= Convergence between Computing Cloud
and Telecommunications Computing

» Graphic Interfaces, Mouse )
Scientific Computing Multi-core
— Defence Applications WEB — Systems

Information Society
1945 1980 1990
1936 1970 2000

_ Embedded Systems:
Foundations - Computing + Physicality

Alan Turing, = Seamless revolution
Kurt Godel

= 95% of chips are
embedded

= Information Systems: The Internet of Things:

Commercial Applications Convergence between

= Integrated circuits Embedded Systems and

the Internet

Evolution driven by exponential progress in technology and explosion of applications



Reactive Systems — The Hardest and the Most Important

Shift of focus from transformational software to reactive systems!

Reactive System
(SW+HW)
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Reactive Systems — The Hardest and the Most Important

Significant differences

Transformational Software Reactive System

= terminating = non-terminating

= deterministic = non-predictable

= platform-independent = platform-dependent
= Theory = No theory!

Reactive systems

O are hard to design due to unpredictable and subtle interactions with the
environment, emergent behaviors, and occasional catastrophic
cascading failures rather than to complex data and algorithms

U are increasingly important in modern computing systems: embedded
systems, cyber-physical systems, mobile systems, web-services
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System Design — Multicore systems

Gartner, Research Note [09]: “Software is struggling to keep pace with the fast

growth of multicore processors” ... “Running advanced multicore machines
with today's software is like "putting a Ferrari engine in a go-cart,”...

"Many of the software configurations in use today will be challenged to support
the hardware configurations possible, and those will be accelerating in the

future.”

Intel [06]: “Multi-core processing is taking the industry on a fast moving and
exciting ride into profoundly new territory. The defining paradigm in computing
performance has shifted inexorably from raw clock speed to parallel
operations and energy efficiency.”

Microsoft Research [07]: “Multicore processors represent one of the largest

technology transitions in the computing industry today, with deep implications
for how we develop software.” 6
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System Design — About Design

Design is a universal concept,
a par excellence intellectual activity
leading to artifacts meeting given requirements.

INGREDIENTS
(Resources)

= Sprinkle with cinnamon
and 1 tablespoon sugar;
In a bowl mix 1 cup sugar,
flour and butter;
-.Blend in unbeaten egg, e g
pinch of salt and the nuts; «1tbsp sugar
» Mix well and pour over apples;

=1c. Sugar
=Bake at 350 degrees
for 45 minutes

1 pie plate buttered
Sor 6 apples, cut up
»% c. butter, melted

=1 c. flour
=’ c. chopped nuts

Materialization

C
O
-+

©
N

©

| .

-
©

]

&)

@)

|
al




(MS+MH)

wa)sAg
m m Ny

m Am_nﬂsomxmv

= \ MS uoneo|ddy

s

® o .

S IS P

S0 £

QO

= Sy K

%vu, (aAjeae|28p)
! sjuswalinbay




System Design — Productivity vs. Correctness

System designers strive to reconcile two often conflicting demands:
O Productivity characterizes the efficiency of the design process.
O Correctness means compliance to requirements

As flawless system design is not attainable, owing to both theoretical
limitations and cost-effectiveness considerations, system designers target
levels of criticality.

Levels of criticality

O Correspond to tradeoffs between correctness and productivity.

O Determine which types of requirements are relevant and to what
extent these requirements should be met e.g. probability of failure
or disparity between nominal and observed values of significant
parameters.




System Design — Productivity

Efficiency of the design process

Tools

11




¥ System Design — Productivity vs. Correctness

Productivity

Design process 2

Design process 1

O
Correctness 100%

12



" System Design — Correctness

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

e AL

—— B

Environment Malevolent
Disturbances Actions

Design Errors

| HW fiIures

Optimization requirements dealing with optimization of functions subject to
guantitative constraints on
1) Performance: how well the system does wrt user demands e.g.
throughput, jitter, latency, quality.
2) Cost: how well resources are used wrt economic demands e.qg.
storage efficiency, processor utilizability, energy efficiency.
Usually they determine tradeoffs between performance and cost 13




System Design — Trustworthiness vs. Optimization

O Trustworthiness requirements characterize qualitative correctness — a
state is either trustworthy or not

O Optimization requirements characterize execution sequences

Non Trustworthy States

Trustworthiness vs. Optimization
The two types of requirements are often antagonistic: trustworthy designs
give rise to non optimized solutions and conversley

14



System Design — Correctness-by-checking

Should be:

O faithful e.g. whatever
property is satisfied
for the model holds
for the real system

U generated
automatically from
system descriptions

Verification
Method

YES, NO, DON'T KNOW

Should be:

O consistent
e.g. there exists
some model
satisfying them

U complete
e.g. they tightly
characterize the
system’s behavior

O As a rule, for infinite state models all non trivial properties are undecidable

e.g. x<100

O Intrinsically high complexity for finite state models (state explosion problem)




o System Design — Correctness-by-Checking: Limitations

O Itis a relative judgment “Are we building the system right?” It would be
an answer to the question “Are we building the right system?” if

1. requirements could be correctly formalized, sound and complete

Effective use of rigorous requirement specification languages for real-life
systems is problematic

2. system models could faithfully represent the system behavior interacting
with its environment

Generating models even for very simple systems, such as the node of a
wireless sensor network, requires understanding intricate interaction
between application software and the underlying execution platform

dContributes to trustworthiness but it is restricted to requirements that can
be formalized and checked efficiently

O For optimization requirements, a more natural approach for their
satisfaction is by enforcing or synthesis rather than by checking

16



System Design — The V-model

Concept of ﬂPEfﬂ[’fiﬂn
i ificati an
Operations vengﬁﬂtm Maintenance

Validatio

Requirements System
| and H'Errﬁ[atiun

Architecture and Validation

Integration,
Detailed Test, and
Design Verification

Implzmzntation

The V-model of the Systems Engineering Process, Source: Wikipedia



System Design — The V-model

Top-down development
and validation

18



System Design — The V-model

The V-model of the traditional Systems Engineering process

1. assumes that all the system requirements are initially known, can be
clearly formulated and understood.

2. assumes that system development is top-down from a set of
requirements. Nonetheless, systems are never designed from scratch;
they are built by incrementally modifying existing systems and
component reuse.

3. considers that global system requirements can be broken down into
requirements satisfied by system components. Furthermore, it implicitly
assumes a compositionality principle: if components are proven correct
with respect to their individual requirements, then correctness of the
whole system can be inferred from correctness of its components.

4. relies mainly on correctness-by-checking (verification or testing)

19
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g Rigorous System Design — The Concept

RSD considers design as a formal accountable and iterative process for
deriving trustworthy and optimized implementations from an application

software and models of its execution platform and its external environment

L _Model-based: successive system descriptions are obtained by correct-
by-construction source-to-source transformations of a single expressive
model rooted in well-defined semantics

L Accountable: possibility to assert which among the requirements are
satisfied and which may not be satisfied — accountability can be enhanced

by using property-preservation results

RSD focuses on mastering and understanding design as a process based
on divide-and-conquer strategies involving iteration on a set of steps and

clearly identifying

O points where human intervention and ingenuity are needed to
resolve design choices through requirements analysis and
confrontation with experimental results.

O segments of the design process that can be supported by tools to
automate tedious and error-prone tasks.



Rigorous System Design — Simplified Flow

Transformation

] Extra-functional
Correctness
Correctness

Code Generation = ITransformation

Execution Platform




Rigorous System Design — Simplified Flow

Application SW

Requirements

Model in BIP

Code Generation  pummm

Deployable Code

!

Integration of
Architectural Constraints

System Model in BIP

Integration of
Communication Glue

Distributed System Model
in S/R-BIP

Performance
Analysis




Rigorous System Design — Is it attainable?

We should learn from two successful rigorous design paradigms:

O VLSI design and associated EDA tools have enabled the IC industry to
sustain almost four orders of magnitude in product complexity growth
since the 80386, while maintaining a consistent product development
timeline.

O Safety-critical systems ensure trustworthy control of aircraft, cars,
plants, medical devices

Main reasons of success
O Coherent and accountable design flows, supported by tools and often
enforced by standards

O Correct-by-construction design enabled by extensive use of
architectures and formal design rules

These are only instructive templates

O ICs consist of a limited number of fairly homogeneous components

O critical systems development techniques are not cost-effective for
general purpose systems




Rigorous System Design — Principles

We need to study system design as a formal process leading from
requirements to implementations.

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Components: Use components for productivity and enhanced correctness

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties
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" Separation of Concerns

\

1Funct|onal > WHAT are the provided

services
Application SW
1 J

Extra-Functional

\

> HOW resources of the
execution platform are used

7T
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Separation of Concerns — SW vs. System Model

Application SW

Time and resources are external parameters
that are linked to corresponding physical quantities
of the execution environment

System Model
=»Time and resources are state variables
= Each action consumes and liberates an amount of
resources explicitly specified (resource parameters)




Separation of Concerns — Building a System Model

Resource-Consistency: Incremental and parallel modification of resources
iIn @ model should agree with laws governing physical resources.

Significant difference between model and physical time:
Physical time

* |s monotonically increasing.

= |ts progress cannot be blocked

Model time
= can block or can involve Zeno runs (as in timed automata)
= Deadline miss = deadlock or time-lock.

Additional difficulties arise in resource modeling for models of distributed
systems in particular because time is a global variable on which depend
resource dynamics.



Separation of Concerns — Building a System Model

System analysis techniques assume resource-robustness: small change
of resource parameters entail commensurable change of performance
Unfortunately, systems are not robust, in general.

For example, one would expect that a system model would exhibit worst
performance for worst-case execution times of its actions.
» Performance degradation can be observed for increasing speed of
the execution platform — Timing Anomaly

= Non determinism is one of the identified causes of such counter-
intuitive behavior

We lack theory for guaranteeing resource-robustness
» performance should change monotonically with resources

= analysis for worst-case and best-case values of resource
parameters suffice to determine performance bounds.
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g Component-based Design

L

Components are
indispensable for enhanced
productivity

and correctness

Component composition
lies at the heart of the
parallel computing
challenge

There is no Common
Component Model
- Heterogeneity




= _Component-based Design — Heterogeneity

Heterogeneity of Execution Modes

Synchronous components (HW, Multimedia application SW)
O Execution is a sequence of non interruptible steps

t—stepistepisteplistep j

Asynchronous components (General purpose application SW)
O No predefined execution step

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS




Component-based Design — Heterogeneity

Synchronous Systems Asynchronous Systems
Y (t+1) = f(Y(t),X(1)) Interacting transition systems
dY/dt = f(Y(t),X(t))
Component: transfer function Component: Transition system
Composition: flow equalization Composition: Interaction
xT 1=
=0 =0
=1 1=1
x(t t)=x(t-1
O L Ui Delay YO y¥ yT
:?: /:1

Xy 1:=0



Desired
relative
slip

Component-based Design — Heterogeneity

f ol
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Copyright 1990-2008 The MathiWaorks, Inc,

Matlab/Simulink
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Component-based Design — Heterogeneity

UML Model

(Rational Rose)

Abort

Wait_Start

Start(HO_time) / begin
clock.set(298900);
HO.set(HO_time) end

timeout(clock) / begin current_is_ok:=EVBO.CIse();
Cyclics!lAnomaly();AcycliclAnomaly();Guidance_Jask!An

omaly(); EAP!Anomaly(); Thrust_Monitor!lAnomaly() end
" = Wait_Clos
on_Time
timeout(clock) / begin

lock.set(TimeConstants.MS_100); / clock.set(TimeConstants.M$_
current_is_ok:=EVBO.Open() end

[ current_is_ok = false ]/ clock.reset() L

[ current_is_ok = true ]

timeout(clock) / current_is_ok:=EVVP

Open_EVB Wait_Clos
o o EVVP
Meout(clock) /
current_is_ok:=EVVP. / clock.set(TimeConstants.MS_10
Open
pen() Stop2
[ eurrent_is_ok = false ] -

[ current_is_ok = true ]




=“Component-based Design — Heterogeneity

Heterogeneity of Interaction

==

Rendezvous: atomic symmetric Broadcast: asymmetric synchronization

synchronization triggered by a Sender

O Any interaction mechanism can be expressed as the hierarchically structured
combination of rendezvous and broadcast

O Existing formalisms and theories are not expressive enough

= they use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call

= encompass point-to-point interaction rather than multiparty interaction



M Component-based Design — Heterogeneity

Heterogeneity of Programming Styles

Thread-based programming Actor-based programming

Software Engineering Systems Engineering



Component-based Design — The Concept of Glue

Build a component C satisfying a given property P, from
" ¢, a set of atomic components described by their behavior
" gl ={gl, ..., gl, ...} a set of glue operators on components

gl12

BTN sat P
C1 C,1 c2 C’Z

O Glue operators are coordination mechanisms such as such as
protocols, schedulers, buses

0 We need a unified composition paradigm for describing and
analyzing the coordination between components in terms of
tangible, well-founded and organized concepts




Component-based Design — Glue Operators

We use operational semantics to define the meaning of a

composite component — glue operators are “behavior
transformers”

0 B

B, @ B, B, — =
Operational
Semantics

Glue Operators
= build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators

= can be specified by using a family of derivation rules (the
Universal Glue)




Component-based Design — Glue Operators

A glue operator defines interactions as a set of derivation rules of the
form

19i-8=Q }ia CA) ke

(q1 ERIRS) qn) -a—> (q’1 ERIRNS q’n)

= LK {1, ..n), | £ 3, Knl=g

= a=\U,_,a, isan interaction
= q’;=q, fori ¢l

Notice that, non deterministic choice and sequential
composition are not glue operators

A glue is a set of glue operators



Component-based Design — Glue Operators: Example

gl is defined by

q,-a—->q’
qd:9,-a—->q4q,

q,-a—=qQ’; Qq,-C—>q,

qd:9,-ac—->q,q,

q,-b—=>q’;, —qQq,-c—>

q:9,-0—>Qq4Qq,




Component-based Design — Glue Operators: Properties

Glue is a first class entity independent from behavior that can be
decomposed and composed

1. Incrementality

|12

2. Flattening

112




Component-based Design — Glue Operators: Expressiveness

= Comparison between formalisms and models is done by flattening
structure and reduction to behaviorally equivalent models e.g. finite state
automaton, Turing machine

» This leads to notions of expressiveness that are not adequate for
comparing coordination capabilities of languages and models e.g.
O all finite state formalisms turn out to be expressively equivalent
O all modeling and programming languages are Turing complete,
while their coordination capabilities tremendously differ

Objective:
= Propose notions of expressiveness based on a strict separation
between behavior and coordination

= Compare existing frameworks by using such notions




Component-based Design — Glue Operators: Expressiveness

= Different from the usual notion of expressiveness!

= Based on strict separation between glue and behavior

Given two glues G, , G,
G, is strongly more expressive than G,
if for any component built by using G, and a set of components ¢,

there exists an equivalent component built by using G, and ¢,




Component-based Design — Glue Operators: Expressiveness

Given two glues G, , G,

G, is weakly more expressive than G,
if for any component built by using G, and a set of components ¢,
there exists an equivalent component built by using G, and ¢,v ¢
where ¢ is a finite set of coordinating components.

112




Component-based Design — Glue Operators: Expressiveness

SCCS
w? <s
¥ < ¥ <
ccs —& > [ v X S [ BIP
=3
Universal
W?é <s Glue
CSP

[Bliudze &Sifakis, Concur 08]
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Rigorous System Design — Semantic Coherency

System designers deal with a large variety of languages, with different
characteristics, each highlighting different dimensions of a system

TSpaces Fortran C Java OSGi
Softbench BPEL
SWbUS Nesc

Corba _. SES/Workbench

MP] SysML

Javabeans § AADL
NET o Statecharts

Verilog VHDL  SystemC TLM

Consequences

O Using semantically unrelated formalisms e.g. for programming, HW
description and simulation, breaks continuity of the design flow and
jeopardizes its coherency

O System development is often decoupled from validation and evaluation.




2" Semantic Coherency

Any system design
flow is de facto based
on a host
programming
language such as C
or Java

1

HOST LANGUAGE

\

NN
| Coompaom



To ensure global consistency of the design flow we need to express the

semantics of the various languages in terms of an all encompassing host

=2 Semantic Coherency

language
(@ ) (@ ) (@ ) (@
DSL Phys. Systems HDL Modeling
Data-flow Mod. Langu. Verilog Languages
Synchronous Matlab SystemC UML
Event-driven Modelica TLM SysML
Asynchronous MP IP-XACT
g™ @ @ J@  AAbt
S S
N % §
6@ Q ‘(\g
Q;, (2 ON

e

(@

Host Language H
*Common Component Model
“EXxpressive

»Simple and Elegant
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Rigorous System Design — Semantic Coherency

Description in a language

Structured Operational Semantics for L is
implemented by an Engine which cyclically
executes a two-phase protocol:

1. Monitors components and determines
enabled interactions

2.Chooses and executes one enabled
interaction



Rigorous System Design — Semantic Coherency

SW written in a lanquaqge L SW written in Host Lanquage H
] I
® O @ ® ®
® O
el 4 oo
IOI ‘ IOI
I |
L °

Engine for H
(SOS for H)




Rigorous System Design — Semantic Coherency

str
&
X Y X * B o Y
——{ + > ¢ ¢
Qe
prreé °
_‘Bpre r
?
Y=X+pre(Y) cmp

Program in Lustre Program in BIP



Rigorous System Design — Semantic Coherency

Host Languages should be

O expressive — coordination glue between components e.g.
protocols, schedulers, buses, architectures can be expressed as
the combination of composition operators

O minimal simple and elegant - achievement of a given
functionality with a minimum of mechanism and a maximum of
clarity

Using Host Languages allows

 overcoming the limitations of existing theoretical frameworks
based on a single composition operator e.g. function call,
asynchronous message passing, rendezvous

O unification of design flows through a Common Component Model
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g% Correct-by-Construction

1 sat Functional

Application SW

> refinement relation

preserving
functional properties

sat Extra-Functional

SyStEmNViode!

AN
oo



a® Correct-by-Construction — Building Correct Components

s 21 |s_22||sAt (3 s 23| |s 24 sat@
S 21 satQ S 22 satO s 23|¢7 O S 24| out O
N -

—
Base elements e.g. atomic components

58



o Correct-by-Construction — Architectures

Architectures |

O depict design principles, paradigms that can be understoo = |
by all, allow thinking on a higher plane and avoiding ~ A
low-level mistakes @ @

O are a means for ensuring global properties characterizing the
coordination between components — correctness for free

O Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
Fault-tolerant architectures

Resource management and QoS control

Time-triggered architectures

Security architectures

Adaptive Architectures

COopDO0D




o Correct-by-Construction — Architectures
An architecture is a component transformer A(n)[X] and a characteristic
property P(n), parameterized by an integer n such that

ad A(n)[C1,..,.Cn] =gl(n) (C1,..,Cn, D(n)), where D(n) is a set of coordinating
components

a A(n)[C1,..,Cn] meets the characteristic property P(n).

Architecture

C| C| & 'S C| C| & 'S

Characteristic property: atomicity of transactions, fault-tolerance ....
60



a8 Correct-by-Construction — Architectures

Rule1: Property Preservation

Deadlock-free - -
Routing Protocol

Deadlock-free components

Deadlock-free
Routing Protocol Deadlock-free

composite

component

61



o8 Correct-by-Construction — Architectures

Rule2: Property Enforcement

Architecture - -

for Mutual Exclusion

Components

Architecture
for Mutual Exclusion

satisfies Mutex

62



o Correct-by-Construction — Architectures: Composability

An architecture ensuring a given property can be obtained as the
combination of a set of architectures ensuring basic properties.

For example, security architectures are obtained by composition of
architectures ensuring
= Antivirus protection
Intrusion Detection System, Intrusion Protection System
Sampling
Monitoring
Watermarking
Embedded cryptography
Integrity checking

Composability: We need theory for combining basic architectures and

their characteristic properties to obtain an architecture meeting a given
global property

63



=8 Correct-by-Construction — Architectures: Composability

Rule3: Property Composability

Mutual Exclusion

Scheduling Policy

Mutual Exclusion &
Scheduling Policy

Feature interaction in telecommunication systems, interference among
web services and interference in aspect programming are all
manifestations of a lack of composability



Correct-by-Construction: Refinement

The Refinement Relation =

(Asynch Message Passing)

C1 C2 C3/C4 > C1/1C2]]1C3||C4

S S2

S1>S82 (S2refines S1) if

= all traces of S2 are traces of S1(modulo some observation criterion)
= if S1 is deadlock-free then S2 is deadlock-free too

= > s preserved by substitution




Rigorous System Design — Correctness-by-Construction for 2

Preservation of = by substitution

—

C1 | C2

C1 C2

Rendezvous

C1| [C2

C1 | C2




a Rigorous System Design — Correctness-by-Construction for >

From the Application Software to the System model

The AS is written in high level languages
supporting abstractions such as
= Atomicity of primitives and interactions between components —
in particular multiparty interaction
» Alogical notion of time assuming zero-time actions and
synchrony of execution wrt to the physical environment

Source-to-source transformation in the host language

\ 4

The generated system model
is a refinement of the AS generated automatically
for a given mapping associating

» Processes of the ASW — processors of the platform
= Data of the ASW — memories of the platform
Interactions — execution paths or protocols
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Putting RiSD into Practice — System Design in BIP

Transformation

Design Space
Exploration




g8 Modeling in BIP — Basic Concepts

Layered component model

EXxpressiveness

Ir —.c 0o dloue. |\

BB E HA IV I O R

Composition operation parameterized by glue IN12, PR12

PR12
IN12

PR1 PR2
IN1 IN2

PR1 ® PR2 ® PR12

_PR1®PR2&®PR12
INT ® IN2 ® IN12




g8 Modeling in BIP — Semantics

\
* a set of atomic components {B,}._, ,

where B;=(Q, 2", —)

« a set of interactions y2?F with P=u_, P,
and P, "P=0 P=uj_; , P

/

* a strict partial order 1 < 2°x 2°F

Interactions fa.}._er {q.-a—>q’;}

> 7y (B1,., Bn)

a=u/ ;. 4a,

(9;...9,)-a—,(q9’;..,q’,) where q’;=q,

Priorities g-a—,q° —(3g9-b—>, rnarxb)

g-a —».q’
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g8 Modeling in BIP — Connectors

Express interactions by combining two protocols: rendezvous and broadcast
= A connector is a set of ports that can be involved in an interaction

= Port attributes (trigger ¥V , synchron @ ) are used to model
rendezvous and broadcast.

» An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

tick1tick2tick3
tick1 tick2 tick3
s r2 ra

S + sr2 + sr3 +sr2r3



g8 Modeling in BIP — Connectors

| 1+b
Atomic Broadcast: a(7+be) bc

a+abc

Causality chain: a+ab+abc+abcd

a(1+x) x=b(1+y)

y=c(1+d)



g8 Modeling in BIP — Connectors

Broadcast
abc

Atomic Broadcast
a’'[bc]

Causality chain
a’'[b’[c'd]]

a(1+b)(1+c)
a b C
a(1+bc)
bc
a b C
a(1+b(1+c(1+d)))
b(1+c(1+d))
c(1+d)
b C



g8 Modeling in BIP — Connectors

a b C a b C
— _J — _J
Y Y
[a’b]c a’bc
~/ +
a b a b a b



g8 Modeling in BIP <The Algebra of Connectors

Syntax: s == [0]1|[111[p]l[X] (synchrons)
t == [OF [T [[p]' | [X]" (triggers)
X o= s|t|xx|x+x

where P is a set of ports, such that 0,1¢P

+ union idempotent, associative, commutative, identity [0]

fusion idempotent, associative, commutative, identity [1],

distributive wrt + ([0] is not absorbing)
[L[] typing unary operators

Semantics: defined as a function | |: AC(P) — 2F

Results [Bliudze&Sifakis, EmSoft 07]:
= Axiomatization
= Boolean representation allowing efficient implementation



The Algebra of Connectors — Boolean Representation

p:. AC(P)— B(P) where B(P) the boolean calculus on P

For P={p,q,r,s,t}
B(pq) = pPAQ A —F A =S A —t
B(par) = PA =S A —t
B(p*q) =(pA—=qQV aPAQ)A T A—=S At
B(0) = false
B(1) = pPA—=QqQA—arA—=SA-t
B(1+p’'g’r's’t’) =true

Results:
= Efficient implementation of connectors by using BDDs

= Synthesis of connectors from boolean constraints on ports



g% Modeling in BIP — Priorities

Priority rules

p1 p2
g1 g2
Priority rule Restricted guard g1’
true — p1 { p2 g1’=g1 A— g2

C > p1{ p2 g1’=g1 A—(C A g2)




a8 Modeling in BIP - Priorities: FIFO policy

PR:t1<t2 > b1(b2  t2<t1 - b2(b1

idle1 idle2 ()
at a2 \

start t1 start t2
C) ready ready2 C)
b1 b2

1 - ~N/ 2
\()exec1 —fg— exec2(>/




a8 \odeling in BIP — Priorities: EDF policy

PR: D1-t1< D2-t2 —> b2( b1  D2-t2< D1-t1 — b1{ b2

idle1 idle2 ()
at a2 \

start t1 start t2
O ready1 ready2 ()
b1 b2
t1 <D1 t2 <D2

execl —— #f—— exec2




Modeling in BIP — Priorities: Composability

2
a(lb . b(?¢c %
b
I
b{?c C ——2 C
a(lb

o\



= Modeling in BIP — Priorities: Composability

We take:

— PRZ
A PR1&PR2

PR1® PR2 is the least priority containing PR1UPR2

Results :
*The operation @ is partial, associative and commutative

 PR1(PR2(B)) #PR2(PR1(B))
 PR1® PR2(B) refines PR1UPR2(B) refines PR1(PR2(B))
* Priorities preserve deadlock-freedom




Modeling in BIP — Priorities: Mutual Exclusion + FIFO policy

t1<t2 - b1( b2 t2<t1 — b2( b1

true - b1( f2 true > b2(f1
idle1 idle2 ()
al a2 \
start t1 start t2
O ready1 ready2 ()
b1 b2
execi exec?2



g Modeling in BIP — Priorities: Example

PR: b1(f2 b2{({fl,b1} (mutexonR)

PR’ b2’ (f1 b1 ({f2,b2} (mutexonR)

Risk of deadlock: PR®PR’ is not defined



Modeling in BIP — The Language

| P1234

P12z | V

Tvi=max(u,x,)

Lulxgi=v P123 | V

I x,:=u

Interactions T u:=max(x;,x,)
\l/}<1:=u

P | U

© © °© © ()

P1 d, P, d, a3 rs P3 Py
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

V=X, 2 X, ++ Y,:=F,(x,) [g5(x3)]
1 1 @ 1 @ 2 2\12 3 3© Q r4l @
Vil g, | V2l g | g | Bl 2| 1, |

‘ [v.<vol | Q423 ‘ ‘




Modeling in BIP — The Language

// atomic component definitid

atomic type Atom(int p, int g

end

data int x, y, z,

data DataType u, v, w,
port MyPort pl (x)
port TypePort2 p2(y, u)

place sl1, s2, s3, s4,

initial to sl
do { /* initialization cg
on pl from sl to s2
provided guardl
do { /* transition code
on p2 from s2 to s3
provided x < y
do { {# plain C code #}

export port MyPort pl is rl

// connector type definition

connector type Bus (PortTypel

PortType2

define port-expression
data int y

on interactionl provided gu

up { /*interaction code
down { /* interaction co

on pl p2 provided pl.x > 0
up {y = pl.x + p2.x }
down { {# pl.x = p2.x = y

export port PortType pO(y)

end

// compound component type definition

compound type Compo (int p, ..)

component CompType 1 cl(p, ..)
component CompType n cn
connector ConType 1 x1( cl.p, .. c2.q )
connector ConType k xk( x1.p0, cn.r )
priority priol

provided guard

xi:interactionl < xj:interaction2

export port PortTypel cl.p is p

export port PortTypek xk.p0 is q

end




o \Modeling in BIP— Approaches encompassing heterogeneity

Vanderbilt’'s Approach

Semantic Unit
Meta-model

Composition
Operators

Behavior

Operational
Semantics

/

ASML

Metropolis

Semantic Domain

Media
Behavior

PTOLEMY

MoC
(Model of Computation)

Operational
Semantics

Channels

Behavior

V

Platform

Operational
Semantics

Platform




Modeling in BIP — System Construction Space

PR  Priority

IN Interaction
© >

Q
S A system is defined as a point of the 3-
§ dimensional space
o Separation of concerns: any combination of
o coordinates defines a system




Modeling in BIP — System Construction Space

q

4
N

Study

= property preservation results by
elementary model transformations
L = fransformations relating classes of
.................................................................................... SyStemS e.g. Untimed-timed,
synchronous-asynchronous




Modeling in BIP— System Construction Space: Incrementality

B1<<B2 if
B1 simulates
B2 and the
simulation
relation is
total

IN1 ¢ IN2

iIf for any interaction of
IN2 contains one in IN1
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B The BIP Toolset — Overview

@\@\% SimuLink“ ﬂjj BIP

¥ | Language
Source2source transformers}

Language |BIR COMPILER
Factory ( Parser |
BIP

: Meta-Model (_BIP Model
Transformers

Code Generation & \J
Runtimes [ C++ Generator ‘ Distributed BIP ’
| (engine based) Generator

Communication Primitives (Send/Rece@

QDistributed Platformjj

http://www.bip-components.com




B The BIP Toolset — Overview

Simulink

|

= ———

Model Repository

Platform
model

BIP model

Embedding Tools

Language
Factory

Verification S/R BIP Transformers
model

Code generation

and runtimes C++ generator Distributed BIP
(engine-based) generator

C/C++| ++ C/C++ ||

BIP BIP BIP

executable executable executable

BIP metamodel

BIP Compiler

BIP

et S

BIP Runtime Engine Distributed Computing Infrastructure




g% The BIP Toolset — The Execution Engine

Dynamic priorities
Meta-model

Interaction Meta-model

C—ab

BIP Execution
BIP model Englne

\/ Platformr




g% The BIP Toolset — The Execution Engine

Y\ |0y |0y (Y |y 7Y

Interaction model

Priorities

BIP
Execution
Engine

Platform




The BIP Toolset — The Execution Engine

Execution of atomic components

Involved ztorns

launchn

execute 2itorn inrezcds

. NIt
exXecut

AN 4 - L

criosearn interacior

choose

ClIO00SC

2 rrarnal interacior)

EXxecution or the Engine

stable state

compute

fezisiole Interacions

ready

iiter
using orioritigs




g The BIP Toolset — The RT Execution Engine

BIP Model
list of active ports execute chosen
+ timing constraints interaction

Real-Time Engine

compute interactions real-time Scheduler

+ timing constraints (e.g. EDF)
deadline missed? update model time & __|
) < - Event Handler
(online checking) events T
T SEensors l T l
real-time actuators external

clock HW platform software



g The BIP Toolset — The RT Execution Engine

[ Conversion of local timing constraints using a single global clock t:

tis never reset, i.e. it represents the total time elapsed
for a clock x, tr(x) corresponds to the value of t at the instant of the lasts reset of x.

[ Resulting constraint and urgency is L <t < U urg, where:
L = max L,
U =min U,
urg = max urg; (lazy < delayable < eager).

urg
L,+Ir(x)<t< U, +In(x) L,+Iny)<t< U, +Iny) Ly+In(z)<t<U; +1In(2)
urgs urg, urgs
p q r
p q r
L,<x<U, L,<y<U, L;<z< U,

urgy urg, urgs



a8 The BIP Toolset — The RT Execution Engine

Execution of atomic components

Involved ztorns

laupch
execute zitorn threads stable state
execute init compute
chosen interaciior) feasivle Interactions
wait deadline ready
chopse filier
urgent inieracior) using oriorities
scheduling filter
update time

lﬂ

xecution of the Engine
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= Compositional Verification

Verify global deadlock-freedom of a system
by separate analysis of the components and of the architecture.

: , ‘p1 p2

K1 &P, K2 K1 o K2
q1 q2
Potential deadlock

D =en(p1) n —en(p2) »
en(q2) A —en(q1)

Potential deadlock

D =en(p1) n —en(p2) A
en(q2) A —en(q3) A

® K3 en(r3) A —en(ri)




By[=0¢4 Bo|=0O6¢, we ll(y(By, By).d01,02) 04 A b A Y=y

Compositional Verification — Interaction Invariants

Method:

Eliminate potential deadlocks D
by computing compositionally
global invariants ¥ such that
yAD=false

'Y(B1, BZ) |: DX

g




Compositional Verification — Interaction Invariants

b b d d
X = yvu Z =(yvu)a(vvr) w = (Vvr)
Yy = XVvZ U= Xvz r = wvz
V= WvZ

Minimal solutions define invariants :
= Component invariants: xvy, zvu vv, wvr
» |nteraction invariants: xvu, zvyvy, zvyvr , zvuvr, Wwv



Compositional Verification — D-Finder

BIP model
D
> l
* Verification * Yy
Omega > Component generation generation
Deadlock- Cl D
freedom
Abstraction and
Il generation l
\ 4 \ 4
L( > > Satisfiability Deadlock BIP
HNACIAD fi i = i i
Yices | > confirmation simulation
*
#false-strengthen #false-give u
9 false 9 P
v

Deadlock-freedom Deadlocks



& Compositional Verification — D-Finder

5000 customers)

Examp|e Number | Number | Number | Numb | Number Number Verification
of of Ctrl of Bool of Int | Potential Remaining | Time
Comp States Variables | Var Deadlocks | Deadlocks

Temperature Control (2 3 6 0 3 8 3 3s

rods)

Temperature Control (4 5 10 0 5 32 15 6s

rods)

UTOPAR 297 795 40 242 -- 0 3m46s

(40 cars,256 CU)

UTOPAR 686 1673 60 362 -- 0 25m29s

(60 cars, 625 CU)

R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s

Philosophers (13000) 26000 65000 0 0 -- 3 38m48s

Philosophers (10000) 20000 50000 0 0 -- 3 29m30s

Smokers (5000 ) 5001 10007 0 0 -- 0 14m

Gas stations (500 pumps, | 5501 21502 0 0 -- 0 18m55s

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/




Compositional Verification — Incremental Verification

X3

e e

X1 X2
%12 = P12 15 X2)

X123 = D123 (N12 X3)
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50

40

30

20

Verfication time (minutes)

10

Compositional Verification — D-Finder

DLFInder:

Iobai posltive mapfalng —
D-F?nder: global fixed-point

NuSmy -z

500

1000

1500

Number of philosophers

200(

Memory usage (Mb)

700

800

500

400

300

200

100 |

K T I |
5 D-Finder: global positive mapplng ——
D-F?ncler: global fixed-point
Nusmv srnagans
L * 1
:
0 500 1000 1500

Number of philosophers

200C



20 I I I I
D-Finder: global positive mapping ——
D-F?nder: global fixed-point
NSy -
-~ 15r
g
=
=
E
.E 10 -
c
2
8
=
0
> 51
)

Compositional Verification — D-Finder

0 1 2 3 4 5
Gas Station; size = N x (50 pumps + 500 custumers)

Memory Usage (Mb)

800

500 | ¥

400

300

200

100

0

| D-Finder: ' lobal posltllva mapplnﬁ —
D-Finder; global fixed-point

J‘H-""-—"-PP

¥

X

&
¢
0

Gas Station: size = N x (50 pumps + 500 custumers)

1 2 3 4

5
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Synchronous Systems — Automata based Model

ST

Idea: Represent synchronous
components as atomic BIP
components

act
v

fool

_X,)

SN

In each step the inputs x and
y are updated and an output z
is produced

The sync transition denotes
the end of a step

sync

act
act
iny INx
f | z=f(xy)
Z | out

out

sync



Synchronous Systems — Automata based Model

A —* B
— > — > >
i —
acy out e eini acy
—®in1 .
~ P2 eyn [clke n2j  —syn
< |. e
act

in C out
F syn
@

= Synchronous components are replaced by automata based models
= Data-flow interactions between data ports replace data-flow links

= Control interactions replace activation links
The sync action is executed synchronously by all components




Synchronous Systems — Automata based Model

act - act
—int out e ein1 . oUte —
®in2 syn clk @ N2 syn
< 2

°
act

in C out
F syn
e

Important issues:

= Strong synchronization may introduce deadlocks - How to guarantee that
the behaviour is deadlock-free?

= Predictability despite non-deterministic behaviour? How to guarantee
confluence of computation in a step?



Synchronous Systems — Modal Flow Graphs

» q strong g must follow p ) 3
S L
> ] weak g may follow p ppq g9
o T
o
""""" 49 conditional g never precedes p P.q.Pq &
open
[cnd2] l [cnd1]
forward | read » answer
1 Cyclic treatment of emails
write
| 1
send send? Possible sequences:
~~~~~~~~ | v - open read close
=y ClOS€ - open read forward send1 close

open read answer write send2 close

open read (forward send1 || answer write send2) close



[cnd2]

forward

o —

sen

I? P
-=>
q

v
q

[cnd1]

answer

close

write

send’?

Synchronous Systems — Modal Flow Graphs vs. Petri nets

O

Final place

©®

Initial place

Cyclic treatment
of emails

Priorities:
x(y ify —x




Synchronous Systems —Tick-Tock Component

tick tock




Synchronous Systems —Tick-Tock Component

tick tock

tick — tock

[x=P]

x:=0
update pesenneeeeneans
X =x+1 x:int

update

X:=x+1



Synchronous Systems —Tick-Tock Component

tick1 tock1 tock2 tick3 | | tock3
S S S
tick tock,tick, tock,ticks, tock,
tick, » tock,tick, tock,ticks — tocksticks
. x3=Ps]
, Xq:=
update,

X1:=X4+1




Synchronous Systems — Some Results

A MFG is called well-triggered if,
O each port has a unique minimal strong cause
O each port has exclusively either strong or weak dependencies
O each port with strong dependencies has its guard true

Well-triggered MFG can be decomposed:
O Strong dependencies, define a set of connected graphs
0 Weak dependencies, express triggering of roots of these graph
O Conditional dependencies, relate ports of different graphs

N
/ R Result
‘ Well-triggered MFG are

deadlock-free and confluent

~~ o




Synchronous Systems — Translating Simulink into BIP

= Experimental results are obtained for discretized demo examples of
MATLAB/Simulink

= For Simulink, executable code is obtained using Real-Time Workshop

Example #A #P | #T #E | n RTW BIP
Anti-lock 39 2 - - | 107 3.20 | 13.51
breaking

Steering 120 15 1 - | 107 3.42 | 16.75
wheel

Thermal 45 3 - - | 107 5.20 9.62
model

64-bit 365 - 60 - | 107 53.65| 31.11
counter

Enabled 24 - - 21107 3.20 3.45
Subsystem

Multi 14 - - 11107 4.01 3.65
Period

#A: atomic blocks, #P: periodic subsystems, #T: triggered

subsystems, #E: enabled subsystems, n: iterations,

execution times for Real Time Workshop (RTW) and BIP (secs)

Simulink
model

(.mdl)

|
l

.bip

Simulink2BIP

simulinkLib.bip
uses

® @
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SW Componentization — The Dala Robot
Dala ATRV (iRobot)

Size (L x W x H): 105cm x 80cm x 100cm
Weight :120 kg
Mobility system: 4 driving wheels
Mobility performances:
Max speed: 2 m/s
Power supply:Batteries 24V, 1440W
Payload
m Sensors:
odometry,
12 Sonars,
1 Sick® laser range finder,
2 black and white IEEE1394 cameras,
1 color IEEE1394 panoramic camera.
n Effectors:
Pand and Tilt Unit (Direct Perceptive)
Processors: 1 Intel Pentium IV
Communication: IEEE802.11b wireless lan (11Mb/s)
Operating system: Linux (2.6.10 kernel)




SW Componentization — The Dala Robot SW

GenoM/BIP Toolchain

madule Motion {
number: $600;
5D MOTION_DATA;

i'l'e-quest SetPos = B I P
GenGM type:  control;

input:  pos:zpas; <5
control: controlPos; )
report: BAD_PARAM; integrated BIP cont

MDdE|S tal:ls:r:q;g'\:'e 55; Iﬂl Bm I__-t_\
priorty: 15; II
v oy | | pow fe)* [\

+ | uuc Eng,mem

Codels

Functional level

:lublnbl

<mm

‘ D-Finder ‘
BIP Models 2
I - w—--»t.-_:' ':.__' 4.' S5




SW Componentization — Methodology

Functional Layer

N\

S
g& see
s o /\ \
S S
3 8 /\ /\
S O cee
= 9
S <
N |
Q
T
\Bl BZ Bn—1 Bn /

Description of the behavior of atomic components

Composition of atomic componenets

using only glue



SW Componentization — Methodology

Controller Controller Controller Controller
Task Task Task Task
Poster Poster
Service Service XX Service Service XN ) Y X
Module Module

Functional and Control Level

Functional and Control Level ::= Module*

Module ::= Service* . Poster
Service ;= Service Controller . Service Task

Service Controller ::= Event Triggered Controller | Cyclic Controller

Cyclic Controller ::= Event Triggered Controller . Cyclic Trigger

Service Task ::= Timed Task | Untimed Task



SW componentization — Event Triggered Controller

Idle: the Service is idle

Ready: checks the possibility for
starting a new Task of the Service

Exec: execution of the Task of the
Service

Abort. Service is aborted

trigger

interrupt trigger

e

interrupt abort finish request

finish

x abort

request



u SW componentization — Cyclic Controller

Cyclic Controller ::=
Event Triggered Controller . Cyclic Trigger

The Cyclic Trigger starts the Event Triggered Controller every period p

Cyclic Trigger

tick
tick trigger tick
count<p / count++ count ==p/count =0

trigger
I

trigger

Event Triggered Controller

interrupt abort finish request

interrupt' abort ' finish ' ‘ request



SW componentization — Untimed Task

Triggered by request

interrupt abort finish request

read

finish
- Exec
status :=1 ’ state

state

interrupt

write

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted




- SW componentization — Timed Task

* Obtained from an Untimed Task
* Its execution time is in [t1,{2]

interrupt abort finish request

request read tick

tick
count < t2 / count++

write state



Untimed Event Triggered Service

SW componentization — Different types of Services

::= Event Triggered Controller. Untimed Task

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

l trigger

Event Triggred
Controller
intrpt req abort finish

intrpt req abort finish

read Untimed Task

o state ( —

write statq

Untimed Event
Triggered Service

| trigger

Event Triggred
Controller

intrpt req abort finish

intrpt req abort finish

read
Timed Task tick
- state —_—
[ ite state

Timed Event Triggered Service

tick
Cyclic Controller ]
intrpt req abort finish
4 i tick
intrpt req abort finish
read
e tick
Timed Task
. state ( —
write Etatud state

Cyclic Service



A module composed of 3 services and a poster

read trigger |

trigger 1

trigger

intrpt req abort ok

|| 1 |

intrpt req abort ok

read trigger |

trigget I tick

trigger

intrpt req abort ok

| | 1 |

intrpt req abort ok

I tick

tick
tick trigger
S— |
trigger

req intrpt abort ok

- SW componentization — A Module

read

=)= read state ~ read tick €+ tick L |
read Ltatc@— read I | l l
= write = write plate -
write write state req intrpt abort ok | .
. = tick dO={ 00—
Untimed Event Timed Event rea
Triggered Service Triggered Service state
— write state =
write
offer offer - status
offer it
L) wiit Cyclic Service
Poster

Module



- SW componentization— Module Pom

Reads and integrates data to provide an estimate of the
position of the robot

Pom ::= SetModel. AdAME. SetRefME. Run. SetPos. Poster

trigger trigger trigger trigger tick read
trigger trigger trigger trigger tick
state ( (=) ) request  state ( == ) request  gstate ( (=) ) request read| " —
write
SetModel AddME SetRefME Run SetPos
offer write
offer

Poster Module Pom



- SW componentization — Module Steo

Computes the relative displacement of the robot

Steo ::=
Init. PixelChooserParam. ComputeMotion. Updatelmage. Poster

trigger trigger I trigger tick“} trigger read
I I

trigger trigoer - .

= 58 trigger  tick tick trigger

write — read —
Init PixelChooserParam ComputeMotion UpdateImage
offer Y G
offer write Module Steo

Poster



SW componentization — Module Camera

Camera ::= Tagging. ConfigureBank. Initialize. OneShot. Poster

trigger “y trigger'y trigger' trigger | tick |

trigger trigger trigger trigger  tick

state — request

write
Tagging ConfigureBank Initialize OneShot

offer write
offer  Poster Module Camera




- SW componentization — Module Scorrel

Computes the stereo-correlation and produces 3D information
about the environment.

Scorrel ::= Init. SetCorrelationParam. SCorrel. Poster

trigger I trigger " trigger | tick [ read
trigger trigger trigger tick
read
Init SetCorrelationParam WHte  Correl
offer

write

offerl  Poster Module Scorrel




SW componentization — Results

functional level controller synthesis
uses the multithreaded BIP execution engine
replaces manually handwritten code
the entire functional level is about 500 KLOC

safety constraints are enforced by construction
expressed using interactions and priorities
no need to be monitored at runtime

empirical tests show improved robustness against arbitrary fault
injections



LaserRF
Aspect
NDD
RFLEX
Antenna
Battery
Heating
PTU
Hueblob
VIAM
DTM
Stereo
P3D
LaserRF+Aspect+NDD

NDD+RFLEX

43
29
27
56
20
30
26
37
28
41
34
33
50
97

82

213
160
152
308
97

176
149
174
187
227
198
196
254
523

459

202
117
117
227
73

138
116
151
156
231
201
199
219
438

344

220x329%34
2175323
222x314x5
234x335x1045
212x3%13
222x317x5
217x314x145
219x322x35
212x310x35
210x36x665
228x320x95
227x320x95
213x35x5%%x629
258x366x85

296x349%52x209

4353
3029
4013
8244
1645
3898
2453
8669
3170
5099
4160
3591
6322
1139

1225

SW componentization — Checking Deadlock-freedom

1:22
0:39
8:16
9:39
0:14
0:26
0:17
0:59
5:42
4:14
13:42
13:20
3:51
40:57

73:43
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Performance Evaluation

HW-driven refinement — The Design Flow
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Performance Evaluation

HW-driven refinement — Building the Application SW Model
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#define IN 1
#define OUT 2
typedef struct _local_states {
int index;
int len;
} Square_state;
void square_init(DOLProcess *p) {
p->local->index = 0;
p->local->len = LENGTH;
}
int square_fire(DOLProcess *p) {
float I;
if (p->local->index < p->local->len) {
DOL_read((void*)IN, &i, sizeof(float), p);

i=i*i;

DOL_write((void*)OUT, &i, sizeof(float), p);

p->local->index++;

}

if (p->local->index >= p->local->len) {
DOL_detach(p);
return -1;

}

return O;

}

y trans

S and e

—a

rerated fro

index=0; é- _____ s ;z_e“
len=LENGTH; | address | OUT
c T ouT T !
[index<len] index++; : size |
15 ) €= (1)< 4 (L4 ' address N
i=0; j=0;count=0; i 2
v---| recv
recv send Po=q
[count<N] [count>0] Y
buff[i]=x;count++; y=buff[j];count--; send

i=(i+1)%N;

j=(j+1)%N;

var: X, y, i, j, count, buff[N];

o

o

.

send / I / send IN
generator FIFO square FIFO consumer
recv

KA

h

O*T recv

¢




HW-driven refinement — Building the HW Model

Performance Evaluation
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HW-driven refinement — Building the HW Model

Collection of hw-processor, memory and bus components
connected as defined in the architecture
= HW-processor and HW-memory are placeholders
= uses HW component library

ARM1 ARM2
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HW-driven refinement — Building the System Model
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HW-driven refinement — Building the System Model

O Transformations defined by the
mapping specify how to fillup the  r------------------ooooo o
HW model

= fully preserve functional behavior n P 4 E
= use HdS component library | | 9eneralor B 4 square | | consumer © :
! J(N 1L I[ @ 1C :

WTransformation on sw model: ! p ’- - Lo -r !
= Splitting SW-channels ! \\.._ 1/ Lo X3, |
= Breaking atomic read/write fmmmmmooo l_L_ . k"t'_'_'_ l_'_'_'l oot '_"_'_'\‘ l_'_': :Ik :'_'_'__I'_'_'_'I
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= H\\/-driven refinement — MJPEG decoder

igzigzagidct mergeframe mergestream

c2

C5

Ce

The MJPEG decoder

Ureads a sequence of frames and displays the decompressed
frames

Uis described as a process network with five processes and nine
communication channels



HW-driven refinement — MPARM Architecture

Shared bus (SB) —‘

Shared
Mem
(SM)

A simplified Multi-Processor ARM (MPARM)
d Five identical tiles and a Shared Memory connected via a Shared Bus.

d Tiles contain a CPU connected to its Local Memory via a Local Bus.
a CPU frequency: 200 Mhz.
a

Access times: 2 CPU cycles for local memory
6 CPU cycles for shared memory



Process mapping table

HW-driven refinement — MJPEG decoder: Results

ARM1 ARM2 ARM3 | ARM | ARM5
4

Mapping1 all

Mapping?2 SS, SF, 1Q | MF, MS

Mapping3 SS, SF 1Q,MF,MS

Mapping4 SS, SF 1Q MF, MS

Mapping5 SS, MS SF 1Q MF

Mapping6 SS SF 1Q MF MS

Mapping7 SS, SF 1Q MF, MS

Mapping8 SS SF 1IQ MF MS
SW-Channel mapping table

Shared LMA1 LM2 LM3 LM4

Mapping1 all
Mapping2 |C6, C7 C1,C2,C3,C4,C5 |C8, C9
Mapping3 |[C3, C4, C5, C6 C1, C2 C7, C8, C9
Mapping4 |[C3, C4, C5,C6,C7 |C1,C2 C8, C9
Mapping5 | all
Mapping6 | all
Mapping7 | C6, C7 C1,C2,C3, C4, C5 C8, C9
Mapping8 C1, C2 C3,C4,C5,C6 |C7 C8, C9




HW-driven refinement — MJPEG decoder: Results

~

68

66

64 -
62 -
60 -
58 -
56
54
52
50 -
; HE NN
6 7 8

0 4

Communication Delay (megacycles)

4L

3t

o |

al |

. i
1 2 3 4 5 6 7 8

Mapping (1) gives the worst computation time as all processes are mapped to a single
processor.

Computation Delay (megacycles)

9

WU The communication overhead is reduced if we distribute sw-channels to the local
memories of the processors.




HW-driven refinement — MJPEG decoder: Results

12 4500

4000
10 | :
3500
8 g 3000
. 2500
6 F 4
2000
4r 1 1500 |
1000
2 r 4
500 |
0—_1——_. | - 0 I 1 1 1 I .
1 2 3 4 5 6 7 8

As more channels are mapped to the local memory, the shared bus contention is
reduced. However, this might increase the local memory contention, as is evident for

mapping (8).

Bus conflict (megacycles)
Memory conflict (cycles)
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Distributed Implementation — From BIP to S/R-BIP

BIP is based on:

O Global state semantics, defined by operational semantics rules,
implemented by the BIP Engine

U Atomic multiparty interactions, e.g. by rendezvous or broadcast

Correct-by-construction translation of BIP models into observationally

equivalent S/R-BIP models

1 Point to point communication by asynchronous message passing

0 No global state - Atomicity of transitions is broken by separating
interaction from internal computation

O The BIP Engine is replaced by a set of Engines executing subsets of
interactions

O Distributed coordination is orchestrated by an architecture




Distributed Implementation — From BIP to S/R-BIP

Transformation of atomic components

a b
b
a g, b gy Oo{a :
fa fy a g, b g
@) fa fy
O
Global state model Partial state model

0 Before reaching a ready state, the set of the enabled ports is sent to the Engine
0 From a ready state, await notification from the Engine indicating the selected port



Distributed Implementation — Single Engine

a1 a2l a3
BIP Model | ]| |
C1 C2 C3 C4
~
a1 a2 a3 %
o 0 A\Q

/17
o = B

One Engine executes all interactions !



Distributed Implementation — Multiple Engines

al a2 a3l

BIP Model |
C1 C2 C3 C4

2\
al a2
\\G

\Nd N
o e e

Semantics Violation
Dispatch interactions across multiple engines !



Distributed Implementation — Conflicting Interactions

al a2 o1 o2
P q p
P g
a1 and a2 depend al and o2 share a
on conflicting common port p
transitions

a1 # a2: the interactions a1 and a2 may be in conflict



Distributed Implementation — Conflict-Free Multiple Engines

o - al# a2 # o3
od# o5 # ab

] Each engine handles interactions of a class of #*



Distributed Implementation — Limitations

a Taking #* may reduce drastically parallelism between interactions



Distributed Implementation — 3-Layer Architecture

SW model

_B |2E

Distributed
Implementation

Interface

Interface

Interface

Interface

Interface

-

-
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Distributed Implementation — 3-Layer Architecture

Transformation of atomic components

IO1| offer \ IOZ‘

pl p2
[g1] L [82]
pl p2
f1(), f2()

n: counts the number
of executed transitions

R. Bagrodia. A distributed algorithm to implement nparty rendevouz, FSTTCS 1987
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Distributed Implementation — 3-Layer Architecture

reserve2
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Distributed Implementation — Centralized CRP

reserve al = = reserve o2
[success al] [not'success al] [not success-a2] [success 2]
ok 0.1 wwem m— — wemm Ok 02
update (N,al) fail ol fail a2 update (N,a2)

* v Vv v v ¢

1 reserve o2
ESEVE O kel fail ol fail o2 ok o2 &

N=[N1, ..., Nk]: keeps track of the state of the counters n of the components



Distributed Implementation — Token Ring CRP
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Distributed Implementation — Design Flow
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o Distributed Implementation — Example

The UTOPAR system is an automated transportation system

proposed by Israel Aircraft Industries in the COMBEST EU
project

HEEEE_ = |

PR 0 e s e e




= Distributed Implementation — Example

A destination

exit

X1t;_

-
User(*)

enter

b

departure;_;

departure

PR open!

awake;_; v awake!

Ucar destination;_; \ destination’
(N) posChanged;_ posChanged!
difival._, arrivall

closei_; \ closel

I enter;_; y

Trequest

enterk”izl’M*l’M
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Central
Station

(1)

requesty j—; yq,

request

(M*M)

M

UTOPAR model in BIP




- Distributed Implementation — Example

Benchmarks for fully automated generation of distributed C++ code
for Linux sockets

25 =5 * 5 calling units and 4 cars — 49 =7 * 7 calling units and 4 cars —
29 Interaction Protocols 53 Interaction Protocols

150
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125

120
= o
E e
O 3
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L
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62 . .
61 f -
60 | -

58
57
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55

Total Execution Time (seconds)
9}
({9
Total Execution Time (seconds)

(29,CENT)
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(53,DP)

Scenario



Distributed Implementation — Further Developments

Priorities:
BIP model with priorities can be transformed into an equivalent model
without priorities. The same implementation principle can be applied

Optimization issues:

O Building a correct snapshot of the system state is possible, but induces a
lot of communication

« Knowledge-based optimization by detecting false conflicts
= Optimizing observability of interaction protocols (for priorities)

O Code optimization for components implemented on the same site

» Replace a composite component by a single flattened component from
which sequential monolithic code can be generated



Measured Time (Seconds)

12

11

10

Automatically generated monolithic C code
Handwritten monolothic Code

BIP -

50 100 150 200 250 300 350

NMumber of frames

400

450
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Discussion — Breaking with Old Ideas

O New trends break with traditional Computing
Systems Engineering - Goodbye to desktop
applications and their ilk

O Too much of research in software engineering,
systems, formal methods, etc. never made it
In practice because it assumed a
"design from scratch" approach and
correctness-by-checking

d Formal methods
= can only partially contribute to enhancing trustworthiness and
optimality
= are limited to systems and properties that can be formalized and
checked efficiently e.g. functional properties of SW components



Discussion — Rigorous System Design

New approach for the design of
trustworthy and optimized systems

 Endeavors unification through
formalization of design as a process
= for deriving trustworthy and
optimal implementations from an
application software and models
of its execution platform and
physical environment
= which is semantically sound,
iIncremental, scalable
and accountable

dOpens the way for moving from ad hoc and empirical design techniques
to a well-founded design discipline



=" Discussion — About BIP

The BIP component framework has been developed for more than 10 years,
with Rigorous Design in mind

O Translation of DSL (Simulink, Lustre, DOL, nesC) into BIP

1 Source-to-source transformations proven correct-by-construction
= taking into account HW resources
= generating distributed implementations for several platforms
= code optimization

d Run-times for centralized execution/simulation, distributed execution,
real-time execution

O Validation and analysis tools
= |Incremental checking for Deadlock-freedom: D-Finder tool
= Statistical Model Checking

O Successful application in many industrial projects
= software componentization for robotic systems (DALA Space Robot for
Astrium)
=  programming multi-core systems (P2012 for STM, MPPA for Kalray)
= complex systems modeling (AFDX and IMA for Airbus)



& Discussion — A System-Centric Vision for CS

System Design

O Raises a multitude of deep theoretical problems such as the
conceptualization of needs in a given area and their effective
transformation into correct artifacts.

O has attracted little attention from scientific communities and is relegated
to second class status
= design is by its nature multi-disciplinary and requires consistent
integration of heterogeneous system models supporting different levels
of abstraction including logics, algorithms and programs as well as
physical system models.

O is central to CS. Awareness on its centrality is a chance to reinvigorate
CS research and build new scientific foundations matching the needs
for increasing system integration and new applications




Discussion — A System-Centric Vision for CS: The Frontiers

Mathematics
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Discussion — A System-Centric Vision for CS: The Frontiers

Ihe Physical Hierarch The Bio-Hierarchy.

We need theory, methods and tools for climbing
up-and-down the abstraction hierarchy

SolarSystem,
ectre-mechanicaliSysten

Cnystals-Eluids-Gases




Discussion — A System-Centric Vision for CS: The Frontiers
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Discussion — A System-Centric Vision for CS: The Frontiers

Artificial vs. Natural Intelligence

Living organisms intimately combine interacting physical and computational

phenomena that have a deep impact on their development and evolution
 Shared characteristics with computing systems
= yse of memory

= distinction between hardware and software
= yse of languages
 Remarkable differences :
= robustness of computation
= built-in mechanisms for adaptivity
= emergence of abstractions — concepts

Interactions and cross-fertilization

M Non von Neumann computing <= Neuromorphic, Cognitive Computing
1 CAD methods&tools —> Synthetic Biology




Discussion — Looking for Foundations

Theoretical research in CS often focuses on “nice theory” that is not
always practically relevant

“Make everything as simple as possible, but not simpler”

“....Iin the academic world the theories that are more likely to attract
a devoted following are those that best allow a clever but not very
original young man to demonstrate his cleverness.”

.... While practitioners propose ad hoc frameworks hardly amenable
to formalization e.g. non-orthogonal concepts, ambiguous semantics

“Perfection is reached not when there is no longer anything to add,
but when there is no longer anything to take away”




Is it possible to find a mathematically elegant and still practicable
theoretical framework for system design?

Physics and Biology study a given “reality”

The key issue is discovering
laws governing phenomena

"The most incomprehensible
thing about the world is that
it is at all comprehensible.”

Computer Science mainly deals with building systems (artifacts)

The key issue is building
correct systems
cost-effectively




B Discussion — Looking for Foundations

The physical world We mold the

is part of our conditions
conditions of

of existence of

existence the cyber-world

Is everything for the best
in the best of all possible
cyber-worlds ?
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