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From Programs to Systems – The Evolution of IST
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Embedded Systems:
Computing + Physicality  
 Seamless revolution

 95% of chips are 
embedded

 Convergence between Computing 
and Telecommunications

 Graphic Interfaces, Mouse

 Information Systems: 
Commercial Applications 
 Integrated circuits

Evolution driven by exponential progress in technology and explosion of applications

The Internet of Things:
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Reactive Systems – The Hardest and the Most Important

Resources HealthBuildings Transport Communications

Reactive System
(SW+HW)

Shift of focus from transformational software to reactive systems!



Reactive Systems – The Hardest and the Most Important

Reactive systems

 are hard to design due to unpredictable and subtle interactions with the 
environment, emergent behaviors, and occasional catastrophic 
cascading failures rather than to complex data and algorithms  

 are increasingly important in modern computing systems: embedded 
systems, cyber-physical systems, mobile systems, web-services

Transformational Software
 terminating
 deterministic 
 platform-independent
 Theory

Reactive System
 non-terminating 
 non-predictable 
 platform-dependent
 No theory!

Significant differences



System Design – An Increasing Gap
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System Design – Multicore systems

6

Gartner, Research Note [09]: “Software is struggling to keep pace with the fast 
growth of multicore processors” … “Running advanced multicore machines 
with today's software is like "putting a Ferrari engine in a go-cart,“…
"Many of the software configurations in use today will be challenged to support 
the hardware configurations possible, and those will be accelerating in the 
future."

Intel [06]: “Multi-core processing is taking the industry on a fast moving and 
exciting ride into profoundly new territory. The defining paradigm in computing 
performance has shifted inexorably from raw clock speed to parallel 
operations and energy efficiency.”

Microsoft Research [07]: “Multicore processors represent one of the largest 
technology transitions in the computing industry today, with deep implications 
for how we develop software.”
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 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion



System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon 
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar, 
flour and butter;

 Blend in unbeaten egg, 
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees 

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Design is a universal concept, 
a par excellence intellectual activity 

leading to artifacts meeting given requirements.

Easy
Apple 
Pie
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System Design – Two Main Gaps
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Correctness? Correctness?



System Design – Productivity vs. Correctness

System designers strive to reconcile two often conflicting demands:
 Productivity characterizes the efficiency of the design process. 
 Correctness means compliance to requirements

As flawless system design is not attainable, owing to both theoretical 
limitations and cost-effectiveness considerations, system designers target 
levels of criticality. 

Levels of criticality 
 Correspond to tradeoffs between correctness and productivity. 
 Determine which types of requirements are relevant and to what 

extent these requirements should be met e.g. probability of failure 
or disparity between nominal and observed values of significant 
parameters. 



System Design – Productivity
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Efficiency of the design process

Skills

Tools

Components
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System Design – Productivity vs. Correctness
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System Design – Correctness

13

Trustworthiness requirements express assurance that the designed 
system can be trusted that it will perform as expected despite

HW failures Design Errors Environment 
Disturbances

Malevolent 
Actions

Optimization requirements dealing with optimization of functions subject to 
quantitative constraints on 

1) Performance: how well the system does wrt user demands e.g.  
throughput, jitter, latency, quality. 

2) Cost: how well resources are used wrt economic demands  e.g. 
storage efficiency, processor utilizability, energy efficiency.

Usually they determine tradeoffs between performance and cost



System Design – Trustworthiness vs. Optimization
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 Trustworthiness requirements characterize qualitative correctness – a 
state is either trustworthy or not

Non Trustworthy States

 Optimization requirements characterize execution sequences 

Trustworthiness vs. Optimization
The two types of requirements are often antagonistic: trustworthy designs
give rise to non optimized solutions and conversley



System Design – Correctness-by-checking

Verification 
Method

Requirements

YES, NO, DON’T KNOW

Should be: 
 faithful e.g. whatever 

property is satisfied 
for the model holds 
for the real system

 generated 
automatically from 
system descriptions

Should be: 
 consistent

e.g. there exists 
some model 
satisfying them

 complete 
e.g. they tightly 
characterize the 
system’s behavior

 As a rule, for infinite state models all non trivial properties are undecidable 
e.g. x<100

 Intrinsically high complexity for finite state models (state explosion problem)

Model
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System Design – Correctness-by-Checking: Limitations

 It is a relative judgment  “Are we building the system right?”  It would be 
an answer to the question “Are we building the right system?” if 

1. requirements could be correctly formalized, sound and complete

Effective use of rigorous requirement specification languages for real-life 
systems is problematic

2. system models could faithfully represent the system behavior interacting 
with its environment

Generating models even for very simple systems, such as the node of a 
wireless sensor network, requires understanding intricate interaction 
between application software and the underlying execution platform

 For optimization requirements, a more natural approach for their 
satisfaction is  by enforcing or synthesis rather than by checking

Contributes to trustworthiness but it is restricted to requirements that can 
be formalized and checked efficiently
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System Design – The V-model

The V-model of the Systems Engineering Process, Source: Wikipedia 



System Design – The V-model
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S sat Req

sat Req_11 sat Req_12S_11 S_12

Top-down development 
and validation

S_21 S_22 S_23 S_24sat satReq_21 Req_22 Req_23 sat Req_24sat



System Design – The V-model

19

The V-model of the traditional Systems Engineering process

1. assumes that all the system requirements are initially known, can be 
clearly formulated and understood. 

2. assumes that system development is top-down from a set of 
requirements. Nonetheless, systems are never designed from scratch; 
they are built by incrementally modifying existing systems and 
component reuse.

3. considers that global system requirements can be broken down into 
requirements satisfied by system components. Furthermore, it implicitly 
assumes a compositionality principle: if components are proven correct 
with respect to their individual requirements, then correctness of the 
whole system can be inferred from correctness of its components. 

4. relies mainly on correctness-by-checking (verification or testing) 
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 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion



Rigorous System Design  – The Concept
RSD considers design as a formal accountable and iterative process for 
deriving trustworthy and optimized implementations from an application 
software and models of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-
by-construction source-to-source transformations of a single expressive 
model rooted in well-defined semantics

 Accountable: possibility to assert which among the requirements are 
satisfied and which may not be satisfied – accountability can be enhanced 
by using property-preservation results

RSD focuses on mastering and understanding design as a process based 
on divide-and-conquer strategies involving iteration on a set of steps and 
clearly identifying 

 points where human intervention and ingenuity are needed to 
resolve design choices through requirements analysis and 
confrontation with experimental results. 

 segments of the design process that can be supported by tools to 
automate tedious and error-prone tasks. 



Rigorous System Design – Simplified Flow

Transformation

Execution Platform

Code Generation

Implementation
Model

Transformation

System Model

Execution Platform
Model

Application SW

Mapping

RequirementsRequirements

Functional
Correctness

Extra-functional
Correctness

Application SW
Model

Embedding



Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW



Rigorous System Design – Is it attainable?

We should learn from two successful rigorous design paradigms:
 VLSI design and associated EDA tools have enabled the IC industry to 

sustain almost four orders of magnitude in product complexity growth 
since the 80386, while maintaining a consistent product development 
timeline.

 Safety-critical systems ensure trustworthy control of aircraft, cars, 
plants, medical devices   

Main reasons of success
 Coherent and accountable design flows, supported by tools and often  

enforced by standards
 Correct-by-construction design enabled by extensive use of 

architectures and formal design rules

These are only instructive templates
 ICs consist of a limited number of fairly homogeneous components
 critical systems development techniques are not cost-effective for 

general purpose systems



Rigorous System Design – Principles

We need to study system design as a formal process leading from 
requirements to implementations. 

Separation of concerns: Keep separate what functionality  is provided 
(application SW) from how its is implemented by using resources of the target 
platform

Coherency: Based on a single  model to avoid gaps between steps due to the 
use of semantically unrelated formalisms e.g. for programming, HW 
description, validation and simulation, breaking continuity of the design flow 
and jeopardizing its coherency

Components:  Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification 
through extensive use of provably correct reference architectures and 
structuring principles enforcing  essential properties
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 System Design
 Rigorous System Design

 Separation of Concerns
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 Modeling in BIP
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 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion



Separation of Concerns

Requirements

Execution Platform

System Model

WHAT are the provided 
services 

HOW resources of the 
execution platform are used 

Application SW
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Separation of Concerns – SW vs. System Model

System Model
Time and resources are state variables

 Each action consumes and liberates an amount of 
resources explicitly specified (resource parameters)

 Resource-Consistency 
Resource-Robustness

Application SW
Time and resources are external parameters 

that are linked to corresponding physical quantities 
of the execution environment

?



Separation of Concerns – Building a System Model

Resource-Consistency: Incremental and parallel modification of resources 
in a model should agree with laws governing physical resources.  

Significant difference between model and physical time:
Physical time
 Is monotonically increasing. 
 Its progress cannot be blocked 

Model time
 can block or can involve Zeno runs (as in timed automata)
 Deadline miss = deadlock or time-lock. 

Additional difficulties arise in resource modeling for models of distributed 
systems in particular because time is a global variable on which depend 
resource dynamics.



Separation of Concerns – Building a System Model

System analysis techniques assume resource-robustness: small change 
of resource parameters entail commensurable change of performance
Unfortunately, systems are not robust, in general.

For example, one would expect that a system model would exhibit worst 
performance for worst-case execution times of its actions.  
 Performance degradation can be observed for increasing speed of 

the execution platform – Timing Anomaly

 Non determinism is one of the identified causes of such counter-
intuitive behavior 

We lack theory for guaranteeing resource-robustness 
 performance should change monotonically with resources 

 analysis for worst-case and best-case values of resource 
parameters suffice to determine performance bounds.
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 Discussion



Component-based Design

Execution Platform

 Components are 
indispensable for enhanced 
productivity
and correctness

 Component composition 
lies at the heart of the 
parallel computing 
challenge

 There is no Common 
Component Model
- Heterogeneity



Component-based Design – Heterogeneity

Open problem: Theory for consistently composing synchronous and 
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Heterogeneity of Execution Modes

Asynchronous components (General purpose application SW)
 No predefined execution step



Component-based Design – Heterogeneity

Synchronous Systems

Y(t+1) = f(Y(t),X(t))

dY/dt = f(Y(t),X(t))

Component: transfer function    
Composition: flow equalization

Unit Delay
x(t) y(t)=x(t-1)

Asynchronous Systems

Interacting transition systems

Component: Transition system    
Composition: Interaction

x↑ τ:=0

x↓ τ:=0

τ=1
y↑

y=0 y=0

y=1y=1

τ=1
y↓



Component-based Design – Heterogeneity

35
Matlab/Simulink



Component-based Design – Heterogeneity

UML Model 
(Rational Rose)



Component-based Design – Heterogeneity

Broadcast: asymmetric synchronization 
triggered by a Sender

 Any interaction mechanism can be expressed as the hierarchically structured 
combination of rendezvous and broadcast

 Existing formalisms and theories are not expressive enough  

 they use variety of low-level coordination mechanisms including 
semaphores,  monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty interaction

Heterogeneity of Interaction

Rendezvous: atomic symmetric 

synchronization



Thread-based programming

Component-based Design – Heterogeneity

Software Engineering

Actor-based programming

Systems Engineering

Heterogeneity of Programming Styles



Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from 
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1

gl1
c2 c’2 

gl12
sat Pgl2

 Glue operators are coordination mechanisms such as such as 
protocols, schedulers, buses

 We need a unified composition paradigm for describing and 
analyzing the coordination between components in terms of 
tangible, well-founded and organized concepts



Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a 
composite component  – glue operators are “behavior 
transformers” 

Operational
Semantics

B

Glue Operators 
 build interactions of composite components from the actions of 
the atomic components e.g. parallel composition operators
 can be specified by using  a family of derivation rules (the 
Universal Glue)



Component-based Design – Glue Operators

{qi - ai →i q’i }i∈I C(qk) k∈K

(q1 ,. ., qn)  - a → (q’1 ,. . , q’n)

A glue operator defines interactions as a set of derivation rules of the 
form

 I,K ⊆ {1, …n}, I ≠ ∅, K∩I=∅

 a= ∪i ∈I aI    is an interaction
 q’i = qi for i ∉I

A glue is a set of glue operators

Notice that, non deterministic choice and sequential 
composition are not glue operators



Component-based Design – Glue Operators: Example

a c

b

b

c

c

c
bc

gl is defined by

q1 - a→ q’1               
q1 q2 - a → q’1 q2

q1 - a→ q’1 q2 - c→ q’2
q1 q2 - ac → q’1 q’2

q1 - b→ q’1 ¬ q2 - c →
q1 q2 - b → q’1 q2

B1 B2

gl(B1,B2)
a

a

b

ac



Component-based Design – Glue Operators: Properties

≅

≅

Glue is a first class entity independent from behavior that can be 
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening 

gl



Component-based Design – Glue Operators: Expressiveness

 Comparison between formalisms and models is done by flattening 
structure and reduction to behaviorally equivalent models e.g. finite state 
automaton, Turing machine 

 This leads to notions of expressiveness that are not adequate for 
comparing coordination capabilities of languages and models e.g. 
 all finite state formalisms turn out to be expressively equivalent 
 all modeling and programming languages are Turing complete, 

while their coordination capabilities tremendously differ 

Objective:
 Propose notions of expressiveness based on a strict separation 

between behavior and coordination
 Compare existing frameworks by using such notions



Component-based Design – Glue Operators: Expressiveness

gl3

c1 c2 c3 c4

gl1 gl2

c1 c3 c2 c4

gl1

gl1

gl1

Given two glues G1 , G2 

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0

≅

 Different from the usual notion of expressiveness!
 Based on strict separation between glue and behavior



Component-based Design – Glue Operators: Expressiveness

gl3

c3c1 c2

gl1

c1 c3 c c2

gl1

gl1

gl1

Given two glues G1 , G2 

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0∪ C
where C is a finite set of coordinating components.

≅



Component-based Design – Glue Operators: Expressiveness

BIP IM CCS 

SCCS

CSP

<S

<S

<S

<S W >W >
W >

W >

[Bliudze&Sifakis, Concur 08]

≅S
Universal

Glue 
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Rigorous System Design – Semantic Coherency

System designers deal with a large variety of languages, with different 
characteristics, each highlighting different dimensions of a system 

Verilog VHDL SystemC

Statecharts

SysML

Matlab/Simulink

AADL

BPEL
JavaTSpaces Fortran

NesC
Corba
MPI

Javabeans
.NET

SWbus
Softbench

TLM

C

SES/Workbench

Fractal

Consequences
 Using semantically unrelated formalisms e.g. for programming, HW 

description and simulation, breaks continuity of the design flow and 
jeopardizes its coherency

 System development is often decoupled from validation and evaluation.

OSGi



Semantic Coherency

Execution Platform

Any system design 
flow is de facto based 
on  a host 
programming  
language such as C 
or JavaH

O
ST

 L
AN

G
U

AG
E
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Semantic Coherency

To ensure global consistency of the design flow we need to express the 
semantics of the various languages in terms of an all encompassing host 
language

DSL
Data-flow

Synchronous
Event-driven

Asynchronous MP

Phys. Systems
Mod. Langu.

Matlab
Modelica

HDL 
Verilog

SystemC
TLM

IP-XACT

Modeling
Languages

UML
SysML
AADL

Host Language H
Common Component Model

Expressive 
Simple and Elegant



Rigorous System Design – Semantic Coherency

Structured Operational Semantics for L is  
implemented by an Engine which cyclically 
executes a two-phase protocol:

1. Monitors components and determines 
enabled interactions

2.Chooses and executes one enabled 
interaction



Rigorous System Design – Semantic Coherency

EMBEDDING

Engine for  
L 

written in H



Rigorous System Design – Semantic Coherency

EMBEDDING

+

pre

B+

Bpre

X Y x y

str

cmpY=X+pre(Y)
Program in Lustre Program in BIP



Rigorous System Design – Semantic Coherency

Host Languages should be  
 expressive – coordination glue between components e.g. 

protocols, schedulers, buses, architectures can be expressed as 
the combination of composition operators 

 minimal simple and elegant - achievement of a given 
functionality with a minimum of mechanism and a maximum of 
clarity

Using Host Languages allows
 overcoming the limitations of existing theoretical frameworks 

based on a single composition operator e.g. function call, 
asynchronous message passing, rendezvous

 unification of design flows through a Common Component Model
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Correct-by-Construction

Execution Platform

System Model

sat Functional

sa
t E

xt
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-F
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ct
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≤ ≥: refinement relation 
preserving
functional properties

Requirements

Application SW
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Correct-by-Construction – Building Correct Components

S_21 Req_21 Req_22 Req_23 Req_24S_22 S_23 S_24

Base elements e.g. atomic components

S_23 S_24S_21 S_22

S_21 S_22 S_23 S_24

sat Pty2
1

sat Pty2
2

Pty2
3

Pty2
4sat sat

⇒ Req

sat Pty1
2

Pty3
4

sat

sat Pty
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Correct-by-Construction – Architectures

Architectures 
 depict design principles, paradigms that can be understood 

by all, allow thinking  on a higher plane and avoiding 
low-level mistakes

 are a means for ensuring global properties characterizing the 
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and 
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
 Fault-tolerant architectures
 Resource management and QoS control
 Time-triggered architectures  
 Security architectures
 Adaptive Architectures
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Correct-by-Construction – Architectures

An architecture is a component transformer A(n)[X] and a characteristic 
property P(n), parameterized by an integer n such that 

 A(n)[C1,..,Cn] = gl(n) (C1,..,Cn, D(n)), where D(n) is a set of coordinating 
components

 A(n)[C1,..,Cn]  meets the characteristic property P(n).

Client-Server 
Architecture

C C S S

Glue

C C S S

Broker=

Characteristic property: atomicity of transactions, fault-tolerance …. 
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Correct-by-Construction – Architectures

Deadlock-free components

Deadlock-free
Routing Protocol

Rule1: Property Preservation

Deadlock-free 
composite 
component

Deadlock-free
Routing Protocol
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Correct-by-Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule2: Property Enforcement

Architecture
for Mutual Exclusion

satisfies  Mutex
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Correct-by-Construction – Architectures: Composability

An architecture  ensuring a given property can be obtained as the 
combination of a set of architectures ensuring basic properties.

For example, security architectures are obtained by composition of 
architectures ensuring

 Antivirus protection
 Intrusion Detection System, Intrusion Protection System
 Sampling
 Monitoring
 Watermarking
 Embedded cryptography
 Integrity checking

Composability: We need theory for combining basic architectures and 
their characteristic properties to obtain an architecture meeting a given 
global property



Correct-by-Construction – Architectures: Composability

Mutual Exclusion 

Rule3: Property Composability 

Scheduling Policy

Mutual Exclusion &
Scheduling Policy

Feature interaction in telecommunication systems, interference among 
web services and interference in aspect programming are all 
manifestations of a lack of composability



Correct-by-Construction: Refinement 

≥
Rendezvous

Protocol 
(Asynch Message Passing)

The Refinement Relation ≥

S1 S2

S1 ≥ S2   (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
 ≥ is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4



gl

Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Rigorous System Design – Correctness-by-Construction for ≥

≥

≥

Preservation of ≥ by substitution

Protocol

C’1 C’2
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Rigorous System Design – Correctness-by-Construction for ≥

From the Application Software to the System model
The AS is written in high level languages 

supporting abstractions such as
 Atomicity of primitives and interactions between components –

in particular multiparty interaction
 A logical notion of time assuming zero-time actions and 

synchrony of execution wrt to the physical environment

The generated system model 
is a  refinement of the AS generated automatically 

for a given mapping associating
 Processes of the ASW → processors of the platform
 Data of the ASW → memories of the platform
 Interactions → execution paths or protocols

Source-to-source transformation in the host language

≥
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Code
Generation

Execution Platform

Putting RiSD into Practice – System Design in BIP

Transformation

System model in 
S/R-BIP

Protocols

System 
model in BIP

HW
Infrastructure 

Mapping

TransformationEmbedding

Application
SW

S2S

S2S S2S

S2S
S2S

S2S S2S

S2S

S2S

S2S S2S

S2SS2S

S2S S2S

S2S

≥

≥

≤

Application SW 
model in BIP

Design Space
Exploration

Design Space
Exploration



Modeling in BIP – Basic Concepts 

B    E    H    A    V     I     O    R
Interactions (protocols)

Priorities  (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1 
IN1 

PR2 
IN2 IN1 ⊗ IN2 ⊗ IN12

PR1 ⊕ PR2 ⊕ PR12
S2S

S2S

S2S

Expressiveness



Modeling in BIP – Semantics

Interactions         {ai}i∈I∈γ    {qi - ai → q’i }i∈I a=∪ i∈I ai

(q1 ,., qn) - a →γ (q’1 ,., q’n)  where q’I =qI

• a set of atomic components {Bi }i=1..n
where Bi =(Qi, 2Pi, →i)

• a set of interactions γ∈22P with P=∪i=1..n Pi
and Pi ∩Pj=∅ P=∪i=1..n Pi

• a strict partial order π ⊆ 2P× 2P

π γ (B1,., Bn)

Priorities q- a →γ q’ ¬ (∃ q- b→γ ∧ a π b )
q- a →π q’
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Modeling in BIP – Connectors

s + sr2 + sr3 +sr2r3

 A connector is a set of ports that can be involved in an interaction

tick1 tick2 tick3

s r2 r3

tick1tick2tick3

 Port attributes (trigger , synchron ) are used to model 
rendezvous and broadcast. 

 An interaction of a connector is a set of ports such that: either it 
contains some trigger or it is maximal.

Express interactions by combining two protocols: rendezvous and broadcast



Modeling in BIP – Connectors

Atomic Broadcast:
a+abc

Causality chain:  a+ab+abc+abcd

c d

c(1+d)

b c

bc
a(1+bc)

a

y=
b(1+y)

b

x=
a(1+x)

a



Modeling in BIP – Connectors

bc
a(1+bc)

a b c

Atomic Broadcast
a’[bc]

b(1+c(1+d))
c(1+d)

a(1+b(1+c(1+d)))

a b c d

Causality chain
a’[b’[c’d]]

a(1+b)(1+c)

a b c

Broadcast
a’bc



Modeling in BIP – Connectors

a b c a b c
≈

+≈

[a’b]’c a’bc

a ba

a’b’

a b

a’b

a ba

ab’



Modeling in BIP –The Algebra of Connectors

Syntax: s  ::=   [0] | [1] | [p] |[x]   (synchrons)
t   ::=   [0]’ | [1]’ | [p]’ | [x]’     (triggers)
x  ::=    s | t | x.x | x + x 
where P is a set of ports, such that 0,1∉P

+    union idempotent, associative, commutative, identity [0] 

. fusion idempotent, associative, commutative, identity [1], 
distributive wrt +  ([0] is not absorbing) 

[ ], [ ]’ typing  unary operators

Semantics: defined as a function | |: AC(P) → 22P

Results [Bliudze&Sifakis, EmSoft 07]:
 Axiomatization 
 Boolean representation allowing efficient implementation



The Algebra of Connectors – Boolean Representation

β: AC(P)→ B(P) where B(P) the boolean calculus on P

For P={p,q,r,s,t}

β(pq) = p∧q ∧ ¬r ∧ ¬s ∧ ¬t

β(p’qr) = p∧ ¬s ∧ ¬t

β(p+q) =(p∧ ¬ q ∨ ¬ p∧ q )∧ ¬r ∧ ¬s ∧ ¬t

β(0)   = false

β(1)    = ¬ p∧ ¬ q ∧ ¬r ∧ ¬s ∧ ¬t

β(1+p’q’r’s’t’) = true

Results:

 Efficient implementation of connectors by using BDDs

 Synthesis of connectors from boolean constraints on ports



Modeling in BIP – Priorities

g1 g2

Priority  rule                        Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2 

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2 )

p1                 p2

Priority rules



Modeling in BIP – Priorities: FIFO policy 

PR : t1≤ t2 → b1〈b2       t2<t1 → b2〈b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2#

start t1 start t2



Modeling in BIP – Priorities: EDF policy 

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2#

PR: D1-t1≤ D2- t2 → b2〈 b1      D2-t2< D1-t1 → b1〈 b2

start t1 start t2

t1 ≤D1 t2 ≤D2



Modeling in BIP – Priorities: Composability

PR1
PR2

≠ PR2
PR1

a 〈1 b b〈2 c

b〈2 c
a 〈1 b

a c
b

c
b

c

a ca c



Modeling in BIP – Priorities: Composability

PR1⊕ PR2 is the least priority containing PR1∪PR2

Results :
•The operation ⊕ is partial, associative and commutative
• PR1(PR2(B)) ≠PR2(PR1(B))
• PR1⊕ PR2(B) refines PR1∪PR2(B) refines PR1(PR2(B)) 
• Priorities preserve deadlock-freedom

PR1
PR2 PR1⊕ PR2

We take:

=∆



Modeling in BIP – Priorities: Mutual Exclusion + FIFO policy

true → b1〈 f2              true → b2〈 f1

t1≤ t2 → b1〈 b2              t2< t1 → b2〈 b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2



Modeling in BIP – Priorities: Example

s1 b1

w2
a1

f1

a2

f2

PR :  b1 〈 f2     b2 〈 { f1, b1’}     (mutex on R)

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PR⊕PR’ is not defined

PR’: b2’ 〈f1      b1’ 〈 { f2, b2 } (mutex on R’)

s2



Modeling in BIP – The Language

p1

q1

p1 q1

p2

r3

p2
q2

p3

r3 p3

q2 q3

q3

p4

r4

x1 x2 x3 x4

y1 y2 z3 z4

y2:=f2(x2) [g3(x3)]x1++

p4

r4

y1:=x1/2

r3

Interactions
p12

q123

p1234

r34

z3
[y1<y2]

p123 < r34[z4>0]

Behavior

Priorities

p123 v

u
↑u:=max(x1,x2)
↓x1:=u

↑v:=max(u,x3)
↓u,x3:=v vp123

↓x2:=u



Modeling in BIP – The Language

// atomic component definition

atomic type Atom(int p, int q, …) 

data int x, y, z, …

data DataType u, v, w, …

port MyPort p1(x)

port TypePort2 p2(y, u)

place s1, s2, s3, s4, …

initial to s1 

do { /* initialization code */ }

on p1 from s1 to s2 

provided guard1

do { /* transition code */ }

on p2 from s2 to s3 

provided x < y

do { {# plain C code #} } 

…

export port MyPort p1 is r1

end

// connector type definition

connector type Bus (PortType1 p1,
PortType2 p2, …)

define port-expression
data int y
…
on interaction1 provided guard1

up { /*interaction code */ } 
down { /* interaction code */ }

…
on p1 p2 provided p1.x > 0 

up {y = p1.x + p2.x }
down { {# p1.x = p2.x = y; #} }

… 
export port PortType  p0(y)

end

// compound component type definition

compound type Compo(int p, …)

component CompType_1 c1(p, …)

…

component CompType_n cn

connector ConType_1 x1( c1.p, … c2.q )

…

connector ConType_k xk( x1.p0, cn.r )

priority prio1

provided guard 

xi:interaction1 < xj:interaction2

…

export port PortType1 c1.p is p

export port PortTypek xk.p0 is q

…

end



Modeling in BIP– Approaches encompassing heterogeneity
Metropolis

Platform

Channels

Director

PTOLEMY

Behavior 

Semantic Domain MoC
(Model of Computation)

Media

Quantity 
Manager

Behavior 

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior 

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics



Modeling in BIP – System Construction Space

A system is defined as a point of the 3-
dimensional space
Separation of concerns: any combination of 
coordinates defines a system

IN         Interaction

PR
   

  P
rio

rit
y 

Glue

System



Modeling in BIP – System Construction Space

Study 
 property preservation results by

elementary model transformations
 transformations relating classes of 

systems e.g. untimed-timed, 
synchronous-asynchronous

INa

asynchronousPR
a 

   
   

  P
R

s 

synchronous

INs



Modeling in BIP– System Construction Space: Incrementality

IN1 ‹ IN2 

if for any interaction of 
IN2 contains one in IN1

‹ INB1<<B2   if 
B1 simulates 
B2 and the 
simulation 
relation is 
total

invariance

dl-freedom
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The BIP Toolset – Overview

http://www.bip-components.com



The BIP Toolset – Overview

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP 
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation 
and runtimes

BIP Runtime Engine

BIP 
executable

C/C++ C/C++

BIP 
executable

S2S
Transformers

Platform 
model

BIP 
executable

BIP 
executable

BIP metamodel

Model Repository



The BIP Toolset – The Execution Engine

Interaction Meta-model

Dynamic priorities
Meta-model

Component Meta-model



The BIP Toolset – The Execution Engine

Interaction model

Priorities



Execution of atomic components

Execution of the Engine

The BIP Toolset – The Execution Engine

busy

filter

stable state

ready

execute

choose

wait 

compute
feasible interactions

filter
using prioritieschoose

a maximal interaction

execute
chosen interaction

notify
involved atoms

init

launch
atom threads



The BIP Toolset – The RT Execution Engine

Real-Time Engine

compute interactions 
+ timing constraints

real-time Scheduler
(e.g. EDF)

HW platform

Event Handler

sensors
actuators external

software

list of active ports
+ timing constraints

BIP Model

real-time
clock

deadline missed?

(online checking)
update model time &

events

execute chosen
interaction



The BIP Toolset – The RT Execution Engine

C

p
L1 ≤ x ≤ U1
urg1

p

q
L2 ≤ y ≤ U2
urg2

q

r
L3 ≤ z ≤ U3
urg3

r

L1 + lr(x) ≤ t ≤ U1 + lr(x) L2 + lr(y) ≤ t ≤ U2 + lr(y) L3 + lr(z) ≤ t ≤ U3 + lr(z)
urg1 urg2 urg3

Conversion of local timing constraints using a single global clock t:
 t is never reset, i.e. it represents the total time elapsed
 for a clock x, tr(x) corresponds to the value of t at the instant of the lasts reset of x. 

Resulting constraint and urgency is L ≤ t ≤ U urg, where:
 L = max Li

 U = min Ui

 urg = max urgi (lazy < delayable < eager).

L ≤ t ≤ U
urgp q r :



Execution of atomic components

Execution of the Engine

The BIP Toolset – The RT Execution Engine

busy

stable state

wait 

ready

compute
feasible interactions

filter

filter
using priorities

wait deadline
choose

urgent interaction

execute

execute
chosen interaction

notify
involved atoms

init

launch
atom threads

scheduling

update time
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Compositional Verification

Verify global deadlock-freedom of a system 
by separate analysis of the components and of the architecture.

K1 K2p1 p2 K1 K2
q1 q2

p1 p2

Potential deadlock 
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q1)

K3

K2K1
p1 p2

q3r3

r1 q2
Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1) 



Method:
Eliminate potential deadlocks D 
by  computing compositionally 
global  invariants χ such that  
χ∧D=false 

Compositional Verification – Interaction Invariants

B1 |= □ φ1   B2 |= □ φ2 ψ∈ II(γ(B1, B2 ),φ1,φ2)   φ1 ∧ φ2 ∧ ψ⇒ χ

γ(B1, B2 ) |= □χ

φ1

φ2

ψ

reachable 
states



Compositional Verification – Interaction Invariants

x

a

y

b

ab
u

c

d

z

v

w

c

r

d

dc

a

b

b

a

d

c

x ⇒ y∨u
y ⇒ x∨z

z ⇒(y∨u)∧(v∨r)
u ⇒ x∨z
v ⇒ w∨z

w ⇒ (v∨r)
r  ⇒ w∨z

Minimal solutions define invariants :
 Component invariants:  x∨y, z∨u ∨v, w∨r 
 Interaction invariants: x∨u, z∨y∨v, z∨y∨r , z∨u∨r, w∨v



Compositional Verification – D-Finder

Verification
Component 
Deadlock-
freedom

generation
D

BIP model

Abstraction and 
II generation

Satisfiability
II ∧ CI ∧ D

DCI

II Deadlock 
confirmation

BIP
simulationYices

Omega

DeadlocksDeadlock-freedom

≠false-strengthen ≠false-give up
false

generation
CI



Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Compositional Verification – D-Finder

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Example Number
of
Comp

Number
of Ctrl 
States

Number
of Bool 
Variables

Numb
of Int 
Var

Number
Potential 
Deadlocks

Number
Remaining 
Deadlocks

Verification 
Time

Temperature Control (2 
rods)

3 6 0 3 8 3 3s

Temperature Control (4 
rods)

5 10 0 5 32 15 6s

UTOPAR
(40 cars,256 CU)

297 795 40 242 -- 0 3m46s

UTOPAR
(60 cars, 625 CU)

686 1673 60 362 -- 0 25m29s

R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s

Philosophers (13000) 26000 65000 0 0 -- 3 38m48s

Philosophers (10000) 20000 50000 0 0 -- 3 29m30s

Smokers (5000 ) 5001 10007 0 0 -- 0 14m

Gas stations (500 pumps, 
5000 customers)

5501 21502 0 0 -- 0 18m55s



Compositional Verification – Incremental Verification

χ1

IN1

IN12

χ12 = φ12 (χ1, χ2)

IN123

χ123 = φ123 (χ12, χ3)

IN2

χ2

IN3

χ3



Compositional Verification – D-Finder



Compositional Verification – D-Finder
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Synchronous Systems – Automata based Model

Idea: Represent synchronous 
components as atomic BIP 
components

 In each step the inputs x and 
y are updated and an output z
is produced

 The sync transition denotes 
the end of a step

f
x
y

z

inx

iny

out

iny

f

inx

sync z:=f(x,y)

out

sync

act

act

x

y

z

act



Synchronous Systems – Automata based Model

 Synchronous components are replaced by automata based models
 Data-flow interactions between data ports replace data-flow links
 Control interactions replace activation links

 The sync action is executed synchronously by all components

A B

C

B

C

A

syn
c

syn
c

syn
c

in1

in2 in2

in1

in

out

clk
out

out

act

act

act



Synchronous Systems – Automata based Model

Important issues: 
 Strong synchronization may introduce deadlocks - How to guarantee that 

the behaviour is deadlock-free?
 Predictability despite non-deterministic behaviour?  How to guarantee 

confluence of computation in a step?

A B

C

syn
c

syn
c

syn
c

in1

in2 in2

in1

in

out

clk
out

out

act

act

act



Synchronous Systems – Modal Flow Graphs

p q

q

q

p

p q must follow p

q may follow p

q never precedes p

p,pq

pq

p,q,pq po
ss

ib
le

se
qu

en
ce

sstrong

weak

conditional

open

read

close

answer

send2

write

forward

send1

[cnd1][cnd2]

Possible sequences:
open read close

open read forward send1 close
open read answer write send2 close

open read (forward send1 || answer write send2) close

Cyclic treatment of emails



Synchronous Systems – Modal Flow Graphs vs. Petri nets

p p

qq

p p

qq

p p

qq

open

read

close

forward

send1

answer

write

send2

[cnd1]

[cnd2]

Priorities:
x 〈 y  if y →x

Cyclic treatment 
of emails

Final place

Initial place



s

x=P
x:=0

Synchronous Systems –Tick-Tock Component

tick tock

tick

tockτ

τ

s

x:int

x<P

x:=x+1



[x=P]
x:=0

Synchronous Systems –Tick-Tock Component

tick tock

tick

x:intx:=x+1

tock

update

tock
tick

update

[x=P]
x:=0

x:=x+1

tick tock



Synchronous Systems –Tick-Tock Component

s

tick1 tock1

s

tick2 tock2

s

tick3 tock3

tick1 tock1tick2 tock2tick3 tock3

[x1=P1]
x1:=0

tick1

x1:=x1+1

tock1tick2

update1

[x2=P2]
x2:=0

x2:=x2+1

tock2tick3

update2

[x3=P3]
x3:=0

x3:=x3+1

tock2tick3

update3



Synchronous Systems – Some Results

A MFG is called well-triggered if,
 each port has a unique minimal strong cause
 each port has exclusively either strong or weak dependencies 
 each port with strong dependencies has its guard true

Well-triggered MFG can be decomposed:
 Strong dependencies, define a set of connected graphs
 Weak dependencies, express triggering of roots of these graph
 Conditional dependencies, relate ports of different graphs

Result:
Well-triggered MFG are 
deadlock-free and confluent



Synchronous Systems – Translating Simulink into BIP

 Experimental results are obtained for discretized demo examples of 
MATLAB/Simulink

 For Simulink, executable code is obtained using Real-Time Workshop

Simulink2BIP

uses

Simulink 
model 
(.mdl)

.bip

.C

BIP2C

.exeg++

simulinkLib.bip

Example #A #P #T #E n RTW BIP

Anti-lock 
breaking

39 2 - - 107 3.20 13.51

Steering 
wheel

120 15 1 - 107 3.42 16.75

Thermal 
model

45 3 - - 107 5.20 9.62

64-bit 
counter

365 - 60 - 107 53.65 31.11

Enabled 
Subsystem

24 - - 2 107 3.20 3.45

Multi 
Period

14 - - 1 107 4.01 3.65

#A: atomic blocks, #P: periodic subsystems, #T: triggered 
subsystems, #E: enabled subsystems, n: iterations, 
execution times for Real Time Workshop (RTW) and BIP (secs)
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SW Componentization – The Dala Robot

Dala ATRV (iRobot)
 Size (L x W x H): 105cm x 80cm x 100cm
 Weight :120 kg
 Mobility system: 4 driving wheels
 Mobility performances:

Max speed: 2 m/s
Power supply:Batteries 24V, 1440W

 Payload
 Sensors:

 odometry,
 12 Sonars,
 1 Sick® laser range finder,
 2 black and white IEEE1394 cameras,
 1 color IEEE1394 panoramic camera.

 Effectors:
 Pand and Tilt Unit (Direct Perceptive) 

 Processors: 1 Intel Pentium IV
 Communication: IEEE802.11b wireless lan (11Mb/s)
 Operating system: Linux (2.6.10 kernel)  



SW Componentization – The Dala Robot SW



SW Componentization – Methodology

…

…

B1 B2 Bn-1 Bn

Functional Layer

…
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Functional and Control Level 

ModuleModule

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Poster Poster

Functional and Control Level ::= Module+

Module ::= Service+ . Poster

Service ::= Service Controller . Service Task 

Service Controller ::= Event Triggered Controller |  Cyclic Controller

Cyclic Controller ::= Event Triggered Controller . Cyclic Trigger

Service Task ::=  Timed Task | Untimed Task

SW Componentization – Methodology



Ready

Idle

Exec

Abort

trigger

request

interrupt

abort

abort
finish

trigger

interrupt abort requestfinish

Idle: the Service is idle

Ready: checks the possibility for 
starting a new Task of the Service

Exec: execution of the Task of the 
Service

Abort: Service is aborted

SW componentization – Event Triggered Controller



Cyclic Controller ::= 
Event Triggered Controller . Cyclic Trigger

Exectick
count<p / count++ count == p / count = 0

trigger

trigger

tick
Cyclic Trigger

trigger

interrupt abort requestfinish

Event Triggered Controller

tick

interrupt abort finish request

The Cyclic Trigger starts the Event Triggered Controller every period p

SW componentization – Cyclic Controller



Triggered by request

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted

interrupt requestabort finish

Exec

Abort

Idle

request

interrupt
abort

finish

read

write

read

write

state

state  
state

state

status

status := 1

SW componentization – Untimed Task



interrupt requestabort finish

Exec

Abort

Idle

request

abort

finish /status:=1

read
write

tick

read

tick
tick

write
count < t2 / count++

t1 ≤ count ≤ t2 state

state  
state

state

status

/count:=0

interrupt

• Obtained from an Untimed Task
• Its execution time is in [t1,t2]

SW componentization – Timed Task



Untimed Event Triggered Service
::= Event Triggered Controller. Untimed Task

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred 
Controller

Untimed Taskread

state  
statestatuswrite

Untimed Event 
Triggered Service

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred 
Controller

Timed Task

read

state  
statestatuswrite

tick

Timed Event Triggered Service 

intrpt req abort finish

intrpt req abort finish

Cyclic Controller 

Timed Task

read

state  
statestatuswrite

tick

tick

tick

Cyclic Service

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

SW componentization – Different types of Services



A module composed of 3 services and a poster

Module

tick

offer

Exec
writeoffer

offer write
data

Poster

read

req okabortintrpt
tick read

tick

write

read

Cyclic Service

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

tick

tick

read tick

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

write
write

read

Untimed Event 
Triggered Service

state
state 
status state 

state 

state

state

readread

write
write status

req okabortintrpt

write

trigger

trigger

tick

status

Timed Event 
Triggered Service

SW componentization – A Module



Reads and integrates data to provide an estimate of the 
position of the robot

Pom ::= SetModel. AddME. SetRefME. Run. SetPos. Poster

trigger triggertrigger readticktrigger

Module Pom
write

offer
data

Poster

trigger

Run

trigger

SetRefME

trigger

AddME

trigger

SetModel

tick

write

SetPos

offer

state state state readrequestrequest request

SW componentization– Module Pom



Computes the relative displacement of the robot

trigger trigger readticktrigger

writeoffer
data

Poster

trigger

PixelChooserParam

trigger

Init

tick

UpdateImage

offer

trigger

tick

ComputeMotion

readwrite

trigger trigger

Module Steo

Steo ::= 
Init. PixelChooserParam. ComputeMotion. UpdateImage. Poster

SW componentization – Module Steo



trigger ticktrigger

Module Camera
write

offer
data

Poster

trigger

ConfigureBank

trigger

offer

trigger

tick

OneShot

request

write

trigger

trigger

trigger

Tagging

state

Initialize

Camera ::= Tagging. ConfigureBank. Initialize. OneShot. Poster

SW componentization – Module Camera



Computes the stereo-correlation and produces 3D information 
about the environment.

trigger tick

Module Scorrelwrite
offer
data

Poster

trigger

Init

offer

trigger

tick

SCorrelwrite

trigger

trigger

trigger

SetCorrelationParam

read

read

Scorrel ::= Init. SetCorrelationParam. SCorrel. Poster

SW componentization – Module Scorrel



SW componentization – Results

 functional level controller synthesis
 uses the multithreaded BIP execution engine
 replaces manually handwritten code
 the entire functional level is about 500 KLOC

 safety constraints are enforced by construction
 expressed using interactions and priorities
 no need to be monitored at runtime

 empirical tests show improved robustness against arbitrary fault 
injections



SW componentization – Checking Deadlock-freedom

Modules Components Locations Interactions States LOC Minutes

LaserRF 43 213 202 220x329x34 4353 1:22
Aspect 29 160 117 217x323 3029 0:39
NDD 27 152 117 222x314x5 4013 8:16
RFLEX 56 308 227 234x335x1045 8244 9:39
Antenna 20 97 73 212x39x13 1645 0:14
Battery 30 176 138 222x317x5 3898 0:26
Heating 26 149 116 217x314x145 2453 0:17
PTU 37 174 151 219x322x35 8669 0:59
Hueblob 28 187 156 212x310x35 3170 5:42
VIAM 41 227 231 210x36x665 5099 4:14
DTM 34 198 201 228x320x95 4160 13:42
Stereo 33 196 199 227x320x95 3591 13:20
P3D 50 254 219 213x35x54x629 6322 3:51
LaserRF+Aspect+NDD 97 523 438 258x366x85 1139

5
40:57

NDD+RFLEX 82 459 344 256x349x52x209 1225
7

73:43
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HW-driven refinement – The Design Flow

DOLApplication SW Mapping Architecture
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HW-driven refinement – Building the Application SW Model

DOLApplication SW Mapping Architecture

Application 
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HW-driven refinement – Building the Application SW Model

 Every process and every sw-channel are 
independently translated to atomic components in 
BIP 

● Connectors are generated from connections of the process network

generator C1 square C2 consumer

generator

OUT

consumer

IN

FIFO

recv

send

square

OUT

IN

FIFO

recv

send

#define IN 1
#define OUT 2
typedef struct _local_states {
int index;
int len;

} Square_state;
void square_init(DOLProcess *p) {

p->local->index = 0;
p->local->len = LENGTH;

}
int square_fire(DOLProcess *p) {

float I;
if (p->local->index < p->local->len) {

DOL_read((void*)IN, &i, sizeof(float), p);
i = i*i;
DOL_write((void*)OUT, &i, sizeof(float), p);
p->local->index++;

}
if (p->local->index >= p->local->len) {

DOL_detach(p);
return -1;

}
return 0;

}

OUT

L1

L2 L3

L4L5
τ

[index<len]
address=&i;

size=sizeof(float);

OUT
index++;

IN

τ
i=i*I;
address=&i;
size=sizeof(float);

τ
[index<len]

index=0;
len=LENGTH;

IN

var: index, len, i, address, size;

size
address

size
address

recv

L1

recv
[count<N]

buff[i]=x;count++;
i=(i+1)%N;

i=0; j=0;count=0;

send

var: x, y, i, j, count, buff[N];

x

y
send
[count>0]
y=buff[j];count--;
j=(j+1)%N;



HW-driven refinement – Building the HW Model

DOLApplication SW Mapping Architecture
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HW-driven refinement – Building the HW Model

Collection of hw-processor, memory and bus components 
connected as defined in the architecture
 HW-processor and HW-memory are placeholders
 uses HW component library

Shared
Mem
(SM)

Shared Bus

Tile1
ARM1

Local 
Mem
(LM1)

Local Bus (LB1)

Tile2
ARM2

Local 
Mem
(LM2)

Local Bus (LB2)

ARM1

LM1

ARM2

LM2

Bus-
Path

Bus-
Path

SM

Local Bus (LB1) Local Bus (LB2)

Shared Bus

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

HW-Bus-
Scheduler

HW-Bus-
Scheduler



HW-driven refinement – Building the System Model
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HW-driven refinement – Building the System Model

ARM1

LM1

HW-Bus-
Scheduler

ARM2

LM2

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

SM

Local Bus (LB1) Local Bus (LB2)

Shared Bus

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

generator square consumer

F
W FR F

W FR

HW-CPU-
Scheduler

HW-CPU-
Scheduler

Buffer

Buffer

SM

Shared Bus

Tile1
ARM1

LM1

LB1

Tile2
ARM2

LM2

LB2

generator consumerFIFOsquareFIFO

 Transformations defined by the 
mapping specify how to fill up the 
HW model
 fully preserve functional behavior
 use HdS component library 

Transformation on sw model:
 Splitting SW-channels
 Breaking atomic read/write
 Adding interactions with HW-CPU-
Scheduler
 FIFO buffers mapped to memory

generator square consumer

SW

HdS

HW

FW FR FW FR

HW-CPU-
Scheduler

HW-CPU-
Scheduler



HW-driven refinement – MJPEG decoder

The MJPEG decoder

reads a sequence of frames and displays the decompressed 
frames 

is described as a process network with five processes and nine 
communication channels



HW-driven refinement – MPARM Architecture

A simplified Multi-Processor ARM (MPARM)
 Five identical tiles and a Shared Memory connected via a Shared Bus.
 Tiles contain a CPU connected to its Local Memory via a Local Bus.
 CPU frequency: 200 Mhz. 
 Access times:  2 CPU cycles for local memory

6 CPU cycles for shared memory

Shared
Mem
(SM)

Shared bus (SB)

Tile1
ARM1

Local
Mem
(LM1)

Local Bus (LB1)

Tile2
ARM2

Local 
Mem
(LM2)

Local Bus (LB2)

Tile5
ARM5

Local 
Mem
(LM5)

Local Bus (LB5)



HW-driven refinement – MJPEG decoder: Results

ARM1 ARM2 ARM3 ARM
4

ARM5

Mapping1 all
Mapping2 SS, SF, IQ MF, MS
Mapping3 SS, SF IQ,MF,MS

Mapping4 SS, SF IQ MF, MS
Mapping5 SS, MS SF IQ MF
Mapping6 SS SF IQ MF MS
Mapping7 SS, SF IQ MF, MS
Mapping8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
Mapping1 all
Mapping2 C6, C7 C1, C2, C3, C4, C5 C8, C9
Mapping3 C3, C4, C5, C6 C1, C2 C7, C8, C9
Mapping4 C3, C4, C5, C6, C7 C1, C2 C8, C9
Mapping5 all
Mapping6 all
Mapping7 C6, C7 C1, C2, C3, C4, C5 C8, C9
Mapping8 C1, C2 C3, C4, C5, C6 C7 C8, C9

Process mapping table

SW-Channel mapping table



HW-driven refinement – MJPEG decoder: Results

Mapping (1) gives the worst computation time as all processes are mapped to a single 
processor. 

The communication overhead is reduced if we distribute sw-channels to the local 
memories of the processors.

Communication delayComputation delay



HW-driven refinement – MJPEG decoder: Results

As more channels are mapped to the local memory, the shared bus contention is 
reduced. However, this might increase the local memory contention, as is evident for 
mapping (8).

Delay (waiting time) due to bus and memory conflict
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Distributed Implementation – From BIP to S/R-BIP

BIP is based on:
Global state semantics, defined by operational semantics rules, 

implemented by the BIP Engine
Atomic multiparty interactions, e.g. by rendezvous or broadcast

Correct-by-construction translation of BIP models  into observationally 
equivalent S/R-BIP models
Point to point communication by asynchronous message passing
No global state - Atomicity of transitions is broken by separating 

interaction from internal computation
The BIP Engine is replaced by a set of Engines executing subsets of 

interactions
 Distributed coordination is orchestrated by an architecture



Distributed Implementation – From BIP to S/R-BIP

 Before reaching a ready state, the set of the enabled ports is sent to the Engine
 From a ready state, await notification from the Engine indicating the selected port

a  ga

a b

Global state model

fa fb
S2S

S2S

S2S

b  gb
a  ga

a

o{a,b}

bo{a,b}

Partial state model

fa fb

b  gb

Transformation of atomic components



Distributed Implementation – Single Engine

BIP Model
a1 a2 a3

a1< a2< a3

One Engine executes all interactions !

C1 C2 C3 C4

C’1 C’2 C’3 C’4

Enginea1

a1< a2< a3
a2 a3



Distributed Implementation – Multiple Engines

Dispatch interactions across multiple engines !

Engine Engine

BIP Model

a1 a2 a3

a1 a2 a3

C1 C2 C3 C4

C’1 C’2 C’3 C’4

Semantics Violation



Distributed Implementation – Conflicting Interactions

α1 α2

α1 and α2 depend 
on conflicting 
transitions

α1 # α2: the interactions α1 and α2 may be in conflict

p q

p q

α1 α2

α1 and α2 share a
common port p

p



Distributed Implementation – Conflict-Free Multiple Engines

α1 α2 α3
α1 #  α2  #  α3

α4 α6α5
α4 #  α5  #  α6

 Each engine handles interactions of a class of #*

Engine

α1

α2
α3 Engine

α4

α5 α6



Distributed Implementation – Limitations

Engine

 Taking #* may reduce drastically parallelism between interactions



Distributed Implementation – 3-Layer Architecture

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed 
Execution 
Engine

Interface Interface Interface Interface Interface

I1

I2

I3



Distributed Implementation – 3-Layer Architecture

[g1]
p1
f1()

[g2]
p2
f2()

p1 p2
S2S

S2S

S2S

p2

p1
f1() ; n++;

p2
f2() ; n++;

offer(n,p1,g1,p2,g2)

offerp1

n: counts the number 
of executed transitions

Transformation of atomic components

R. Bagrodia. A distributed algorithm to implement nparty rendevouz, FSTTCS 1987



Distributed Implementation – 3-Layer Architecture 

S2S

S2S

S2S

C1 C6C3 C5C2 C4
 

α1

 

α2

 

α3

 

α4

C1
Protocol

offer port

C2
Protocol

C3
Protocol

C4
Protocol

C5

Protocol

C6

Protocol

Interaction Protocol

offerport
 

α1

 

α2

Interaction Protocol

offerport
 

α3

 

α4

Conflict Resolution 
Protocol

reserveok

CR 
Protocol
Model

fail

Conflict Resolution 
Protocol

reserveok fail

S2S

S2S

S2S

 

α1

offer port offer port offer port offer port offer port

[α1α2][α3α4]

reserveok fail reserveok fail



Distributed Implementation – 3-Layer Architecture

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4

Interaction Protocol

 

α1

 

α2 Interaction Protocol

 

α3

 

α4

o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

Centralized Conflict Resolution Protocol

reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

C1 C6C3 C5C2 C4

α1 α2 α3

α4



Distributed Implementation – Centralized CRP

reserve α1 reserve α2

[success α1]
ok α1

update (N,α1)

[not success α1]

fail α1

[success α2]
ok α2

update (N,α2)

[not success α2]

fail α2

N=[N1, …, Nk]: keeps  track of the state of the counters n of the components

reserve α1 reserve α2
ok α1 ok α2fail α1 fail α2



Distributed Implementation – Token Ring CRP

Interaction Protocol
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α2 Interaction Protocol
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α4

reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4
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CRPRTST
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Distributed Implementation – Dining Philosophers CRP

Interaction Protocol
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α2 Interaction Protocol
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Distributed Implementation – Design Flow
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Distributed Implementation – Example

The UTOPAR system is an automated transportation system
proposed by Israel Aircraft Industries in the COMBEST EU 
project



Distributed Implementation – Example

request

enter

exit

destination

exiti=1,N

departurei=1,
Nopeni=1,N

awakei=1,N

destinationi=1,N
posChangedi=
1,Narrivali=1,N
closei=1,N

enteri=1,N

enterk,,i=1,M*1,M

requestk,,i=1,M*1,
M

close
arrival

posChanged
destination

awake
open

departure

request

User(*)

CallingUnit
(M*M)

Ucar
(N)

Central
Station

(1)

openi=1,N

UTOPAR model in BIP



Distributed Implementation – Example

Benchmarks for fully automated generation of distributed C++ code 
for Linux sockets

25 = 5 * 5 calling units and 4 cars –
29 Interaction Protocols

49 = 7 * 7 calling units and 4 cars –
53 Interaction Protocols



Distributed Implementation – Further Developments

Priorities:
BIP model with priorities can be transformed into an equivalent model 
without priorities. The same implementation principle can be applied

Optimization issues: 
 Building a correct snapshot of the system state is possible, but induces a 
lot of communication 
 Knowledge-based optimization by detecting false conflicts
 Optimizing observability of interaction protocols (for priorities)

 Code optimization for components implemented on the same site
 Replace a composite component by a single flattened component from 
which sequential monolithic code can be generated 



Distributed Implementation – Monolithic Code Generation
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 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion



Discussion – Breaking with Old Ideas

 New trends break with traditional Computing 
Systems Engineering - Goodbye to desktop 
applications and their ilk 

 Too much of research in software engineering,
systems, formal methods, etc. never made it 
in practice because it assumed a 
"design from scratch" approach and 
correctness-by-checking

 Formal methods 
 can only partially contribute to enhancing trustworthiness and 

optimality 
 are limited to systems and properties that can be formalized and 

checked efficiently e.g. functional properties of SW components



Discussion – Rigorous System Design

New approach for the design of 
trustworthy and optimized systems

 Endeavors unification through 
formalization of design as a process 
 for deriving trustworthy and 

optimal implementations from an
application software and models 
of its execution platform and 
physical environment

 which is semantically sound, 
incremental, scalable
and accountable

Opens the way for moving from ad hoc and empirical design techniques 
to a well-founded design discipline



Discussion – About BIP

The BIP component framework has been developed for more than 10 years, 
with Rigorous Design in mind 

 Translation of DSL (Simulink, Lustre, DOL, nesC) into BIP

 Source-to-source transformations proven correct-by-construction
 taking into account HW resources
 generating distributed implementations for several platforms
 code optimization

 Run-times for centralized execution/simulation, distributed execution, 
real-time execution

 Validation and analysis tools
 Incremental checking for Deadlock-freedom:  D-Finder tool
 Statistical Model Checking

 Successful application in many industrial projects
 software componentization for robotic systems (DALA Space Robot for 

Astrium)
 programming multi-core systems (P2012 for STM, MPPA for Kalray)
 complex systems modeling (AFDX and IMA for Airbus)



Discussion – A System-Centric Vision for CS

System  Design

 Raises a multitude of deep theoretical problems such as the 
conceptualization of needs in a given area and their effective 
transformation into correct artifacts. 

 has attracted little attention from scientific communities and is relegated 
to second class status
 design is by its nature multi-disciplinary and requires consistent 
integration of heterogeneous system models supporting different levels 
of abstraction including logics, algorithms and programs as well as 
physical system models.

 is central to CS. Awareness on its centrality is a chance to reinvigorate 
CS research  and build new scientific foundations matching the needs 
for increasing system integration and new applications



Discussion – A System-Centric Vision for CS: The Frontiers

Logic
Mathematics

BiologyPhysics Computer 
Science



Discussion – A System-Centric Vision for CS: The Frontiers

The Physical Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Cyber-Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Integrated Circuit

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing 
up-and-down the abstraction hierarchy

Ecosystem
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• Deals with phenomena  of 
the « real »  physical 
world (transformations of 
matter and energy)

• Focuses mainly on the 
discovery of physical 
laws.

• Physical systems –
Analytic models

• Continuous mathematics

• Differential equations -
robustness

• Predictability for classical 
Physics

• Mature discipline

Physics

• Deals with the 
representation and 
transformation information

• Focuses mainly on the 
construction of systems 

• Computing systems –
Machines

• Discrete mathematics –
Logic

• Automata, Algorithms, 
Complexity Theory

• Verification, Testing, 

• Young fast evolving 
discipline

Computer Sc.



Discussion – A System-Centric Vision for CS: The Frontiers

Artificial vs. Natural Intelligence
Living organisms intimately combine interacting physical and computational 
phenomena that have a deep impact on their development and evolution
 Shared characteristics with computing systems 

 use of memory 
 distinction between hardware and software  
 use of languages 

 Remarkable differences : 
 robustness of computation
 built-in mechanisms for adaptivity
 emergence of abstractions – concepts

Interactions and cross-fertilization
 Non von Neumann computing  ⇐ Neuromorphic, Cognitive Computing
 CAD  methods&tools                 ⇒ Synthetic Biology 



Discussion – Looking for Foundations

Theoretical research in CS often focuses on “nice theory” that is not 
always practically relevant

…. while practitioners propose ad hoc frameworks hardly amenable 
to formalization e.g. non-orthogonal concepts, ambiguous semantics 

“….. in the academic world the theories that are more likely to attract 
a devoted following are those that best allow a clever but not very 
original young man to demonstrate his cleverness.”

“Perfection is reached not when there is no longer anything to add, 
but when there is no longer anything to take away”

“Make everything as simple as possible, but not simpler”



Discussion – Looking for Foundations

Is it possible to find a mathematically elegant and still practicable 
theoretical framework for system design?

"The most incomprehensible 
thing about the world is that 
it is at all comprehensible."

The key issue is discovering 
laws governing phenomena 

Physics and Biology study a given “reality”

Computer Science mainly deals with building systems (artifacts) 

The key issue is building
correct systems 
cost-effectively 



Discussion – Looking for Foundations

We mold the 
conditions 
of existence of
the cyber-world

Is everything for the best 
in the best of all possible 

cyber-worlds ?

The physical world 
is part of our 
conditions of 
existence 
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