
Rigorous
System Design in BIP

Nano-Tera/Artist Summer School
on Embedded System Design

Aix-les-Bains, September 17 - 21, 2012Joseph Sifakis
EPFL and Verimag Laboratory
in collaboration with
A. Basu, S. Bensalem, S. Bliudze, M. Bozga, J. Combaz, H. Nguyen, M. Jaber, J. Quilbeuf

From Programs to Systems – The Evolution of IST

Foundations -
Alan Turing,
Kurt Gödel

Scientific Computing
– Defence Applications WEB –

Information Society

Embedded Systems:
Computing + Physicality
 Seamless revolution

 95% of chips are
embedded

 Convergence between Computing
and Telecommunications

 Graphic Interfaces, Mouse

 Information Systems:
Commercial Applications
 Integrated circuits

Evolution driven by exponential progress in technology and explosion of applications

The Internet of Things:
Convergence between

Embedded Systems and
the Internet

Multi-core
Systems

1936

1945

1970

1980 1990

2000 2015

2010

Cloud
Computing

Reactive Systems – The Hardest and the Most Important

Resources HealthBuildings Transport Communications

Reactive System
(SW+HW)

Shift of focus from transformational software to reactive systems!

Reactive Systems – The Hardest and the Most Important

Reactive systems

 are hard to design due to unpredictable and subtle interactions with the
environment, emergent behaviors, and occasional catastrophic
cascading failures rather than to complex data and algorithms

 are increasingly important in modern computing systems: embedded
systems, cyber-physical systems, mobile systems, web-services

Transformational Software
 terminating
 deterministic
 platform-independent
 Theory

Reactive System
 non-terminating
 non-predictable
 platform-dependent
 No theory!

Significant differences

System Design – An Increasing Gap

Te
ch

no
lo

gi
ca

l
C

ap
ab

ilit
ie

s

C
om

pu
tin

g
Sy

st
em

s
D

es
ig

n

System Design – Multicore systems

6

Gartner, Research Note [09]: “Software is struggling to keep pace with the fast
growth of multicore processors” … “Running advanced multicore machines
with today's software is like "putting a Ferrari engine in a go-cart,“…
"Many of the software configurations in use today will be challenged to support
the hardware configurations possible, and those will be accelerating in the
future."

Intel [06]: “Multi-core processing is taking the industry on a fast moving and
exciting ride into profoundly new territory. The defining paradigm in computing
performance has shifted inexorably from raw clock speed to parallel
operations and energy efficiency.”

Microsoft Research [07]: “Multicore processors represent one of the largest
technology transitions in the computing industry today, with deep implications
for how we develop software.”

O
V
E
R
V
I
E
W

7

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar,
flour and butter;

 Blend in unbeaten egg,
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Design is a universal concept,
a par excellence intellectual activity

leading to artifacts meeting given requirements.

Easy
Apple
Pie

Pr
oc

ed
ur

al
iz

at
io

n

M
at

er
ia

liz
at

io
n

System Design – Two Main Gaps
R

eq
ui

re
m

en
ts

(d
ec

la
ra

tiv
e)

Ap
pl

ic
at

io
n

SW
(e

xe
cu

ta
bl

e)

Sy
st

em
(H

W
+S

W
)

Correctness? Correctness?

System Design – Productivity vs. Correctness

System designers strive to reconcile two often conflicting demands:
 Productivity characterizes the efficiency of the design process.
 Correctness means compliance to requirements

As flawless system design is not attainable, owing to both theoretical
limitations and cost-effectiveness considerations, system designers target
levels of criticality.

Levels of criticality
 Correspond to tradeoffs between correctness and productivity.
 Determine which types of requirements are relevant and to what

extent these requirements should be met e.g. probability of failure
or disparity between nominal and observed values of significant
parameters.

System Design – Productivity

11

Efficiency of the design process

Skills

Tools

Components

12

System Design – Productivity vs. Correctness
Pr

od
uc

tiv
ity

Correctness

Design process 1

Design process 2

100%

System Design – Correctness

13

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

HW failures Design Errors Environment
Disturbances

Malevolent
Actions

Optimization requirements dealing with optimization of functions subject to
quantitative constraints on

1) Performance: how well the system does wrt user demands e.g.
throughput, jitter, latency, quality.

2) Cost: how well resources are used wrt economic demands e.g.
storage efficiency, processor utilizability, energy efficiency.

Usually they determine tradeoffs between performance and cost

System Design – Trustworthiness vs. Optimization

14

 Trustworthiness requirements characterize qualitative correctness – a
state is either trustworthy or not

Non Trustworthy States

 Optimization requirements characterize execution sequences

Trustworthiness vs. Optimization
The two types of requirements are often antagonistic: trustworthy designs
give rise to non optimized solutions and conversley

System Design – Correctness-by-checking

Verification
Method

Requirements

YES, NO, DON’T KNOW

Should be:
 faithful e.g. whatever

property is satisfied
for the model holds
for the real system

 generated
automatically from
system descriptions

Should be:
 consistent

e.g. there exists
some model
satisfying them

 complete
e.g. they tightly
characterize the
system’s behavior

 As a rule, for infinite state models all non trivial properties are undecidable
e.g. x<100

 Intrinsically high complexity for finite state models (state explosion problem)

Model

16

System Design – Correctness-by-Checking: Limitations

 It is a relative judgment “Are we building the system right?” It would be
an answer to the question “Are we building the right system?” if

1. requirements could be correctly formalized, sound and complete

Effective use of rigorous requirement specification languages for real-life
systems is problematic

2. system models could faithfully represent the system behavior interacting
with its environment

Generating models even for very simple systems, such as the node of a
wireless sensor network, requires understanding intricate interaction
between application software and the underlying execution platform

 For optimization requirements, a more natural approach for their
satisfaction is by enforcing or synthesis rather than by checking

Contributes to trustworthiness but it is restricted to requirements that can
be formalized and checked efficiently

17

System Design – The V-model

The V-model of the Systems Engineering Process, Source: Wikipedia

System Design – The V-model

18

S sat Req

sat Req_11 sat Req_12S_11 S_12

Top-down development
and validation

S_21 S_22 S_23 S_24sat satReq_21 Req_22 Req_23 sat Req_24sat

System Design – The V-model

19

The V-model of the traditional Systems Engineering process

1. assumes that all the system requirements are initially known, can be
clearly formulated and understood.

2. assumes that system development is top-down from a set of
requirements. Nonetheless, systems are never designed from scratch;
they are built by incrementally modifying existing systems and
component reuse.

3. considers that global system requirements can be broken down into
requirements satisfied by system components. Furthermore, it implicitly
assumes a compositionality principle: if components are proven correct
with respect to their individual requirements, then correctness of the
whole system can be inferred from correctness of its components.

4. relies mainly on correctness-by-checking (verification or testing)

O
V
E
R
V
I
E
W

20

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Rigorous System Design – The Concept
RSD considers design as a formal accountable and iterative process for
deriving trustworthy and optimized implementations from an application
software and models of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-
by-construction source-to-source transformations of a single expressive
model rooted in well-defined semantics

 Accountable: possibility to assert which among the requirements are
satisfied and which may not be satisfied – accountability can be enhanced
by using property-preservation results

RSD focuses on mastering and understanding design as a process based
on divide-and-conquer strategies involving iteration on a set of steps and
clearly identifying

 points where human intervention and ingenuity are needed to
resolve design choices through requirements analysis and
confrontation with experimental results.

 segments of the design process that can be supported by tools to
automate tedious and error-prone tasks.

Rigorous System Design – Simplified Flow

Transformation

Execution Platform

Code Generation

Implementation
Model

Transformation

System Model

Execution Platform
Model

Application SW

Mapping

RequirementsRequirements

Functional
Correctness

Extra-functional
Correctness

Application SW
Model

Embedding

Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW

Rigorous System Design – Is it attainable?

We should learn from two successful rigorous design paradigms:
 VLSI design and associated EDA tools have enabled the IC industry to

sustain almost four orders of magnitude in product complexity growth
since the 80386, while maintaining a consistent product development
timeline.

 Safety-critical systems ensure trustworthy control of aircraft, cars,
plants, medical devices

Main reasons of success
 Coherent and accountable design flows, supported by tools and often

enforced by standards
 Correct-by-construction design enabled by extensive use of

architectures and formal design rules

These are only instructive templates
 ICs consist of a limited number of fairly homogeneous components
 critical systems development techniques are not cost-effective for

general purpose systems

Rigorous System Design – Principles

We need to study system design as a formal process leading from
requirements to implementations.

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Components: Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties

O
V
E
R
V
I
E
W

26

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Separation of Concerns

Requirements

Execution Platform

System Model

WHAT are the provided
services

HOW resources of the
execution platform are used

Application SW

Functional

Ex
tra

-F
un

ct
io

na
l

Separation of Concerns – SW vs. System Model

System Model
Time and resources are state variables

 Each action consumes and liberates an amount of
resources explicitly specified (resource parameters)

 Resource-Consistency
Resource-Robustness

Application SW
Time and resources are external parameters

that are linked to corresponding physical quantities
of the execution environment

?

Separation of Concerns – Building a System Model

Resource-Consistency: Incremental and parallel modification of resources
in a model should agree with laws governing physical resources.

Significant difference between model and physical time:
Physical time
 Is monotonically increasing.
 Its progress cannot be blocked

Model time
 can block or can involve Zeno runs (as in timed automata)
 Deadline miss = deadlock or time-lock.

Additional difficulties arise in resource modeling for models of distributed
systems in particular because time is a global variable on which depend
resource dynamics.

Separation of Concerns – Building a System Model

System analysis techniques assume resource-robustness: small change
of resource parameters entail commensurable change of performance
Unfortunately, systems are not robust, in general.

For example, one would expect that a system model would exhibit worst
performance for worst-case execution times of its actions.
 Performance degradation can be observed for increasing speed of

the execution platform – Timing Anomaly

 Non determinism is one of the identified causes of such counter-
intuitive behavior

We lack theory for guaranteeing resource-robustness
 performance should change monotonically with resources

 analysis for worst-case and best-case values of resource
parameters suffice to determine performance bounds.

O
V
E
R
V
I
E
W

31

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Component-based Design

Execution Platform

 Components are
indispensable for enhanced
productivity
and correctness

 Component composition
lies at the heart of the
parallel computing
challenge

 There is no Common
Component Model
- Heterogeneity

Component-based Design – Heterogeneity

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Heterogeneity of Execution Modes

Asynchronous components (General purpose application SW)
 No predefined execution step

Component-based Design – Heterogeneity

Synchronous Systems

Y(t+1) = f(Y(t),X(t))

dY/dt = f(Y(t),X(t))

Component: transfer function
Composition: flow equalization

Unit Delay
x(t) y(t)=x(t-1)

Asynchronous Systems

Interacting transition systems

Component: Transition system
Composition: Interaction

x↑ τ:=0

x↓ τ:=0

τ=1
y↑

y=0 y=0

y=1y=1

τ=1
y↓

Component-based Design – Heterogeneity

35
Matlab/Simulink

Component-based Design – Heterogeneity

UML Model
(Rational Rose)

Component-based Design – Heterogeneity

Broadcast: asymmetric synchronization
triggered by a Sender

 Any interaction mechanism can be expressed as the hierarchically structured
combination of rendezvous and broadcast

 Existing formalisms and theories are not expressive enough

 they use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty interaction

Heterogeneity of Interaction

Rendezvous: atomic symmetric

synchronization

Thread-based programming

Component-based Design – Heterogeneity

Software Engineering

Actor-based programming

Systems Engineering

Heterogeneity of Programming Styles

Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1

gl1
c2 c’2

gl12
sat Pgl2

 Glue operators are coordination mechanisms such as such as
protocols, schedulers, buses

 We need a unified composition paradigm for describing and
analyzing the coordination between components in terms of
tangible, well-founded and organized concepts

Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a
composite component – glue operators are “behavior
transformers”

Operational
Semantics

B

Glue Operators
 build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators
 can be specified by using a family of derivation rules (the
Universal Glue)

Component-based Design – Glue Operators

{qi - ai →i q’i }i∈I C(qk) k∈K

(q1 ,. ., qn) - a → (q’1 ,. . , q’n)

A glue operator defines interactions as a set of derivation rules of the
form

 I,K ⊆ {1, …n}, I ≠ ∅, K∩I=∅

 a= ∪i ∈I aI is an interaction
 q’i = qi for i ∉I

A glue is a set of glue operators

Notice that, non deterministic choice and sequential
composition are not glue operators

Component-based Design – Glue Operators: Example

a c

b

b

c

c

c
bc

gl is defined by

q1 - a→ q’1
q1 q2 - a → q’1 q2

q1 - a→ q’1 q2 - c→ q’2
q1 q2 - ac → q’1 q’2

q1 - b→ q’1 ¬ q2 - c →
q1 q2 - b → q’1 q2

B1 B2

gl(B1,B2)
a

a

b

ac

Component-based Design – Glue Operators: Properties

≅

≅

Glue is a first class entity independent from behavior that can be
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening

gl

Component-based Design – Glue Operators: Expressiveness

 Comparison between formalisms and models is done by flattening
structure and reduction to behaviorally equivalent models e.g. finite state
automaton, Turing machine

 This leads to notions of expressiveness that are not adequate for
comparing coordination capabilities of languages and models e.g.
 all finite state formalisms turn out to be expressively equivalent
 all modeling and programming languages are Turing complete,

while their coordination capabilities tremendously differ

Objective:
 Propose notions of expressiveness based on a strict separation

between behavior and coordination
 Compare existing frameworks by using such notions

Component-based Design – Glue Operators: Expressiveness

gl3

c1 c2 c3 c4

gl1 gl2

c1 c3 c2 c4

gl1

gl1

gl1

Given two glues G1 , G2

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0

≅

 Different from the usual notion of expressiveness!
 Based on strict separation between glue and behavior

Component-based Design – Glue Operators: Expressiveness

gl3

c3c1 c2

gl1

c1 c3 c c2

gl1

gl1

gl1

Given two glues G1 , G2

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0∪ C
where C is a finite set of coordinating components.

≅

Component-based Design – Glue Operators: Expressiveness

BIP IM CCS

SCCS

CSP

<S

<S

<S

<S W >W >
W >

W >

[Bliudze&Sifakis, Concur 08]

≅S
Universal

Glue

O
V
E
R
V
I
E
W

48

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Rigorous System Design – Semantic Coherency

System designers deal with a large variety of languages, with different
characteristics, each highlighting different dimensions of a system

Verilog VHDL SystemC

Statecharts

SysML

Matlab/Simulink

AADL

BPEL
JavaTSpaces Fortran

NesC
Corba
MPI

Javabeans
.NET

SWbus
Softbench

TLM

C

SES/Workbench

Fractal

Consequences
 Using semantically unrelated formalisms e.g. for programming, HW

description and simulation, breaks continuity of the design flow and
jeopardizes its coherency

 System development is often decoupled from validation and evaluation.

OSGi

Semantic Coherency

Execution Platform

Any system design
flow is de facto based
on a host
programming
language such as C
or JavaH

O
ST

 L
AN

G
U

AG
E

51

Semantic Coherency

To ensure global consistency of the design flow we need to express the
semantics of the various languages in terms of an all encompassing host
language

DSL
Data-flow

Synchronous
Event-driven

Asynchronous MP

Phys. Systems
Mod. Langu.

Matlab
Modelica

HDL
Verilog

SystemC
TLM

IP-XACT

Modeling
Languages

UML
SysML
AADL

Host Language H
Common Component Model

Expressive
Simple and Elegant

Rigorous System Design – Semantic Coherency

Structured Operational Semantics for L is
implemented by an Engine which cyclically
executes a two-phase protocol:

1. Monitors components and determines
enabled interactions

2.Chooses and executes one enabled
interaction

Rigorous System Design – Semantic Coherency

EMBEDDING

Engine for
L

written in H

Rigorous System Design – Semantic Coherency

EMBEDDING

+

pre

B+

Bpre

X Y x y

str

cmpY=X+pre(Y)
Program in Lustre Program in BIP

Rigorous System Design – Semantic Coherency

Host Languages should be
 expressive – coordination glue between components e.g.

protocols, schedulers, buses, architectures can be expressed as
the combination of composition operators

 minimal simple and elegant - achievement of a given
functionality with a minimum of mechanism and a maximum of
clarity

Using Host Languages allows
 overcoming the limitations of existing theoretical frameworks

based on a single composition operator e.g. function call,
asynchronous message passing, rendezvous

 unification of design flows through a Common Component Model

O
V
E
R
V
I
E
W

56

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Correct-by-Construction

Execution Platform

System Model

sat Functional

sa
t E

xt
ra

-F
un

ct
io

na
l

≤ ≥: refinement relation
preserving
functional properties

Requirements

Application SW

58

Correct-by-Construction – Building Correct Components

S_21 Req_21 Req_22 Req_23 Req_24S_22 S_23 S_24

Base elements e.g. atomic components

S_23 S_24S_21 S_22

S_21 S_22 S_23 S_24

sat Pty2
1

sat Pty2
2

Pty2
3

Pty2
4sat sat

⇒ Req

sat Pty1
2

Pty3
4

sat

sat Pty

59

Correct-by-Construction – Architectures

Architectures
 depict design principles, paradigms that can be understood

by all, allow thinking on a higher plane and avoiding
low-level mistakes

 are a means for ensuring global properties characterizing the
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
 Fault-tolerant architectures
 Resource management and QoS control
 Time-triggered architectures
 Security architectures
 Adaptive Architectures

60

Correct-by-Construction – Architectures

An architecture is a component transformer A(n)[X] and a characteristic
property P(n), parameterized by an integer n such that

 A(n)[C1,..,Cn] = gl(n) (C1,..,Cn, D(n)), where D(n) is a set of coordinating
components

 A(n)[C1,..,Cn] meets the characteristic property P(n).

Client-Server
Architecture

C C S S

Glue

C C S S

Broker=

Characteristic property: atomicity of transactions, fault-tolerance ….

61

Correct-by-Construction – Architectures

Deadlock-free components

Deadlock-free
Routing Protocol

Rule1: Property Preservation

Deadlock-free
composite
component

Deadlock-free
Routing Protocol

62

Correct-by-Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule2: Property Enforcement

Architecture
for Mutual Exclusion

satisfies Mutex

63

Correct-by-Construction – Architectures: Composability

An architecture ensuring a given property can be obtained as the
combination of a set of architectures ensuring basic properties.

For example, security architectures are obtained by composition of
architectures ensuring

 Antivirus protection
 Intrusion Detection System, Intrusion Protection System
 Sampling
 Monitoring
 Watermarking
 Embedded cryptography
 Integrity checking

Composability: We need theory for combining basic architectures and
their characteristic properties to obtain an architecture meeting a given
global property

Correct-by-Construction – Architectures: Composability

Mutual Exclusion

Rule3: Property Composability

Scheduling Policy

Mutual Exclusion &
Scheduling Policy

Feature interaction in telecommunication systems, interference among
web services and interference in aspect programming are all
manifestations of a lack of composability

Correct-by-Construction: Refinement

≥
Rendezvous

Protocol
(Asynch Message Passing)

The Refinement Relation ≥

S1 S2

S1 ≥ S2 (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
 ≥ is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4

gl

Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Rigorous System Design – Correctness-by-Construction for ≥

≥

≥

Preservation of ≥ by substitution

Protocol

C’1 C’2

67

Rigorous System Design – Correctness-by-Construction for ≥

From the Application Software to the System model
The AS is written in high level languages

supporting abstractions such as
 Atomicity of primitives and interactions between components –

in particular multiparty interaction
 A logical notion of time assuming zero-time actions and

synchrony of execution wrt to the physical environment

The generated system model
is a refinement of the AS generated automatically

for a given mapping associating
 Processes of the ASW → processors of the platform
 Data of the ASW → memories of the platform
 Interactions → execution paths or protocols

Source-to-source transformation in the host language

≥

O
V
E
R
V
I
E
W

68

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Code
Generation

Execution Platform

Putting RiSD into Practice – System Design in BIP

Transformation

System model in
S/R-BIP

Protocols

System
model in BIP

HW
Infrastructure

Mapping

TransformationEmbedding

Application
SW

S2S

S2S S2S

S2S
S2S

S2S S2S

S2S

S2S

S2S S2S

S2SS2S

S2S S2S

S2S

≥

≥

≤

Application SW
model in BIP

Design Space
Exploration

Design Space
Exploration

Modeling in BIP – Basic Concepts

B E H A V I O R
Interactions (protocols)

Priorities (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1
IN1

PR2
IN2 IN1 ⊗ IN2 ⊗ IN12

PR1 ⊕ PR2 ⊕ PR12
S2S

S2S

S2S

Expressiveness

Modeling in BIP – Semantics

Interactions {ai}i∈I∈γ {qi - ai → q’i }i∈I a=∪ i∈I ai

(q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI

• a set of atomic components {Bi }i=1..n
where Bi =(Qi, 2Pi, →i)

• a set of interactions γ∈22P with P=∪i=1..n Pi
and Pi ∩Pj=∅ P=∪i=1..n Pi

• a strict partial order π ⊆ 2P× 2P

π γ (B1,., Bn)

Priorities q- a →γ q’ ¬ (∃ q- b→γ ∧ a π b)
q- a →π q’

O
V
E
R
V
I
E
W

72

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Modeling in BIP – Connectors

s + sr2 + sr3 +sr2r3

 A connector is a set of ports that can be involved in an interaction

tick1 tick2 tick3

s r2 r3

tick1tick2tick3

 Port attributes (trigger , synchron) are used to model
rendezvous and broadcast.

 An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

Express interactions by combining two protocols: rendezvous and broadcast

Modeling in BIP – Connectors

Atomic Broadcast:
a+abc

Causality chain: a+ab+abc+abcd

c d

c(1+d)

b c

bc
a(1+bc)

a

y=
b(1+y)

b

x=
a(1+x)

a

Modeling in BIP – Connectors

bc
a(1+bc)

a b c

Atomic Broadcast
a’[bc]

b(1+c(1+d))
c(1+d)

a(1+b(1+c(1+d)))

a b c d

Causality chain
a’[b’[c’d]]

a(1+b)(1+c)

a b c

Broadcast
a’bc

Modeling in BIP – Connectors

a b c a b c
≈

+≈

[a’b]’c a’bc

a ba

a’b’

a b

a’b

a ba

ab’

Modeling in BIP –The Algebra of Connectors

Syntax: s ::= [0] | [1] | [p] |[x] (synchrons)
t ::= [0]’ | [1]’ | [p]’ | [x]’ (triggers)
x ::= s | t | x.x | x + x
where P is a set of ports, such that 0,1∉P

+ union idempotent, associative, commutative, identity [0]

. fusion idempotent, associative, commutative, identity [1],
distributive wrt + ([0] is not absorbing)

[], []’ typing unary operators

Semantics: defined as a function | |: AC(P) → 22P

Results [Bliudze&Sifakis, EmSoft 07]:
 Axiomatization
 Boolean representation allowing efficient implementation

The Algebra of Connectors – Boolean Representation

β: AC(P)→ B(P) where B(P) the boolean calculus on P

For P={p,q,r,s,t}

β(pq) = p∧q ∧ ¬r ∧ ¬s ∧ ¬t

β(p’qr) = p∧ ¬s ∧ ¬t

β(p+q) =(p∧ ¬ q ∨ ¬ p∧ q)∧ ¬r ∧ ¬s ∧ ¬t

β(0) = false

β(1) = ¬ p∧ ¬ q ∧ ¬r ∧ ¬s ∧ ¬t

β(1+p’q’r’s’t’) = true

Results:

 Efficient implementation of connectors by using BDDs

 Synthesis of connectors from boolean constraints on ports

Modeling in BIP – Priorities

g1 g2

Priority rule Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2)

p1 p2

Priority rules

Modeling in BIP – Priorities: FIFO policy

PR : t1≤ t2 → b1〈b2 t2<t1 → b2〈b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2#

start t1 start t2

Modeling in BIP – Priorities: EDF policy

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2#

PR: D1-t1≤ D2- t2 → b2〈 b1 D2-t2< D1-t1 → b1〈 b2

start t1 start t2

t1 ≤D1 t2 ≤D2

Modeling in BIP – Priorities: Composability

PR1
PR2

≠ PR2
PR1

a 〈1 b b〈2 c

b〈2 c
a 〈1 b

a c
b

c
b

c

a ca c

Modeling in BIP – Priorities: Composability

PR1⊕ PR2 is the least priority containing PR1∪PR2

Results :
•The operation ⊕ is partial, associative and commutative
• PR1(PR2(B)) ≠PR2(PR1(B))
• PR1⊕ PR2(B) refines PR1∪PR2(B) refines PR1(PR2(B))
• Priorities preserve deadlock-freedom

PR1
PR2 PR1⊕ PR2

We take:

=∆

Modeling in BIP – Priorities: Mutual Exclusion + FIFO policy

true → b1〈 f2 true → b2〈 f1

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2

Modeling in BIP – Priorities: Example

s1 b1

w2
a1

f1

a2

f2

PR : b1 〈 f2 b2 〈 { f1, b1’} (mutex on R)

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PR⊕PR’ is not defined

PR’: b2’ 〈f1 b1’ 〈 { f2, b2 } (mutex on R’)

s2

Modeling in BIP – The Language

p1

q1

p1 q1

p2

r3

p2
q2

p3

r3 p3

q2 q3

q3

p4

r4

x1 x2 x3 x4

y1 y2 z3 z4

y2:=f2(x2) [g3(x3)]x1++

p4

r4

y1:=x1/2

r3

Interactions
p12

q123

p1234

r34

z3
[y1<y2]

p123 < r34[z4>0]

Behavior

Priorities

p123 v

u
↑u:=max(x1,x2)
↓x1:=u

↑v:=max(u,x3)
↓u,x3:=v vp123

↓x2:=u

Modeling in BIP – The Language

// atomic component definition

atomic type Atom(int p, int q, …)

data int x, y, z, …

data DataType u, v, w, …

port MyPort p1(x)

port TypePort2 p2(y, u)

place s1, s2, s3, s4, …

initial to s1

do { /* initialization code */ }

on p1 from s1 to s2

provided guard1

do { /* transition code */ }

on p2 from s2 to s3

provided x < y

do { {# plain C code #} }

…

export port MyPort p1 is r1

end

// connector type definition

connector type Bus (PortType1 p1,
PortType2 p2, …)

define port-expression
data int y
…
on interaction1 provided guard1

up { /*interaction code */ }
down { /* interaction code */ }

…
on p1 p2 provided p1.x > 0

up {y = p1.x + p2.x }
down { {# p1.x = p2.x = y; #} }

…
export port PortType p0(y)

end

// compound component type definition

compound type Compo(int p, …)

component CompType_1 c1(p, …)

…

component CompType_n cn

connector ConType_1 x1(c1.p, … c2.q)

…

connector ConType_k xk(x1.p0, cn.r)

priority prio1

provided guard

xi:interaction1 < xj:interaction2

…

export port PortType1 c1.p is p

export port PortTypek xk.p0 is q

…

end

Modeling in BIP– Approaches encompassing heterogeneity
Metropolis

Platform

Channels

Director

PTOLEMY

Behavior

Semantic Domain MoC
(Model of Computation)

Media

Quantity
Manager

Behavior

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics

Modeling in BIP – System Construction Space

A system is defined as a point of the 3-
dimensional space
Separation of concerns: any combination of
coordinates defines a system

IN Interaction

PR

 P
rio

rit
y

Glue

System

Modeling in BIP – System Construction Space

Study
 property preservation results by

elementary model transformations
 transformations relating classes of

systems e.g. untimed-timed,
synchronous-asynchronous

INa

asynchronousPR
a

 P
R

s

synchronous

INs

Modeling in BIP– System Construction Space: Incrementality

IN1 ‹ IN2

if for any interaction of
IN2 contains one in IN1

‹ INB1<<B2 if
B1 simulates
B2 and the
simulation
relation is
total

invariance

dl-freedom

O
V
E
R
V
I
E
W

92

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

The BIP Toolset – Overview

http://www.bip-components.com

The BIP Toolset – Overview

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation
and runtimes

BIP Runtime Engine

BIP
executable

C/C++ C/C++

BIP
executable

S2S
Transformers

Platform
model

BIP
executable

BIP
executable

BIP metamodel

Model Repository

The BIP Toolset – The Execution Engine

Interaction Meta-model

Dynamic priorities
Meta-model

Component Meta-model

The BIP Toolset – The Execution Engine

Interaction model

Priorities

Execution of atomic components

Execution of the Engine

The BIP Toolset – The Execution Engine

busy

filter

stable state

ready

execute

choose

wait

compute
feasible interactions

filter
using prioritieschoose

a maximal interaction

execute
chosen interaction

notify
involved atoms

init

launch
atom threads

The BIP Toolset – The RT Execution Engine

Real-Time Engine

compute interactions
+ timing constraints

real-time Scheduler
(e.g. EDF)

HW platform

Event Handler

sensors
actuators external

software

list of active ports
+ timing constraints

BIP Model

real-time
clock

deadline missed?

(online checking)
update model time &

events

execute chosen
interaction

The BIP Toolset – The RT Execution Engine

C

p
L1 ≤ x ≤ U1
urg1

p

q
L2 ≤ y ≤ U2
urg2

q

r
L3 ≤ z ≤ U3
urg3

r

L1 + lr(x) ≤ t ≤ U1 + lr(x) L2 + lr(y) ≤ t ≤ U2 + lr(y) L3 + lr(z) ≤ t ≤ U3 + lr(z)
urg1 urg2 urg3

Conversion of local timing constraints using a single global clock t:
 t is never reset, i.e. it represents the total time elapsed
 for a clock x, tr(x) corresponds to the value of t at the instant of the lasts reset of x.

Resulting constraint and urgency is L ≤ t ≤ U urg, where:
 L = max Li

 U = min Ui

 urg = max urgi (lazy < delayable < eager).

L ≤ t ≤ U
urgp q r :

Execution of atomic components

Execution of the Engine

The BIP Toolset – The RT Execution Engine

busy

stable state

wait

ready

compute
feasible interactions

filter

filter
using priorities

wait deadline
choose

urgent interaction

execute

execute
chosen interaction

notify
involved atoms

init

launch
atom threads

scheduling

update time

O
V
E
R
V
I
E
W

101

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Compositional Verification

Verify global deadlock-freedom of a system
by separate analysis of the components and of the architecture.

K1 K2p1 p2 K1 K2
q1 q2

p1 p2

Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q1)

K3

K2K1
p1 p2

q3r3

r1 q2
Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1)

Method:
Eliminate potential deadlocks D
by computing compositionally
global invariants χ such that
χ∧D=false

Compositional Verification – Interaction Invariants

B1 |= □ φ1 B2 |= □ φ2 ψ∈ II(γ(B1, B2),φ1,φ2) φ1 ∧ φ2 ∧ ψ⇒ χ

γ(B1, B2) |= □χ

φ1

φ2

ψ

reachable
states

Compositional Verification – Interaction Invariants

x

a

y

b

ab
u

c

d

z

v

w

c

r

d

dc

a

b

b

a

d

c

x ⇒ y∨u
y ⇒ x∨z

z ⇒(y∨u)∧(v∨r)
u ⇒ x∨z
v ⇒ w∨z

w ⇒ (v∨r)
r ⇒ w∨z

Minimal solutions define invariants :
 Component invariants: x∨y, z∨u ∨v, w∨r
 Interaction invariants: x∨u, z∨y∨v, z∨y∨r , z∨u∨r, w∨v

Compositional Verification – D-Finder

Verification
Component
Deadlock-
freedom

generation
D

BIP model

Abstraction and
II generation

Satisfiability
II ∧ CI ∧ D

DCI

II Deadlock
confirmation

BIP
simulationYices

Omega

DeadlocksDeadlock-freedom

≠false-strengthen ≠false-give up
false

generation
CI

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Compositional Verification – D-Finder

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Example Number
of
Comp

Number
of Ctrl
States

Number
of Bool
Variables

Numb
of Int
Var

Number
Potential
Deadlocks

Number
Remaining
Deadlocks

Verification
Time

Temperature Control (2
rods)

3 6 0 3 8 3 3s

Temperature Control (4
rods)

5 10 0 5 32 15 6s

UTOPAR
(40 cars,256 CU)

297 795 40 242 -- 0 3m46s

UTOPAR
(60 cars, 625 CU)

686 1673 60 362 -- 0 25m29s

R/W(10000 readers) 10002 20006 0 1 -- 0 36m10s

Philosophers (13000) 26000 65000 0 0 -- 3 38m48s

Philosophers (10000) 20000 50000 0 0 -- 3 29m30s

Smokers (5000) 5001 10007 0 0 -- 0 14m

Gas stations (500 pumps,
5000 customers)

5501 21502 0 0 -- 0 18m55s

Compositional Verification – Incremental Verification

χ1

IN1

IN12

χ12 = φ12 (χ1, χ2)

IN123

χ123 = φ123 (χ12, χ3)

IN2

χ2

IN3

χ3

Compositional Verification – D-Finder

Compositional Verification – D-Finder

O
V
E
R
V
I
E
W

110

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Synchronous Systems – Automata based Model

Idea: Represent synchronous
components as atomic BIP
components

 In each step the inputs x and
y are updated and an output z
is produced

 The sync transition denotes
the end of a step

f
x
y

z

inx

iny

out

iny

f

inx

sync z:=f(x,y)

out

sync

act

act

x

y

z

act

Synchronous Systems – Automata based Model

 Synchronous components are replaced by automata based models
 Data-flow interactions between data ports replace data-flow links
 Control interactions replace activation links

 The sync action is executed synchronously by all components

A B

C

B

C

A

syn
c

syn
c

syn
c

in1

in2 in2

in1

in

out

clk
out

out

act

act

act

Synchronous Systems – Automata based Model

Important issues:
 Strong synchronization may introduce deadlocks - How to guarantee that

the behaviour is deadlock-free?
 Predictability despite non-deterministic behaviour? How to guarantee

confluence of computation in a step?

A B

C

syn
c

syn
c

syn
c

in1

in2 in2

in1

in

out

clk
out

out

act

act

act

Synchronous Systems – Modal Flow Graphs

p q

q

q

p

p q must follow p

q may follow p

q never precedes p

p,pq

pq

p,q,pq po
ss

ib
le

se
qu

en
ce

sstrong

weak

conditional

open

read

close

answer

send2

write

forward

send1

[cnd1][cnd2]

Possible sequences:
open read close

open read forward send1 close
open read answer write send2 close

open read (forward send1 || answer write send2) close

Cyclic treatment of emails

Synchronous Systems – Modal Flow Graphs vs. Petri nets

p p

qq

p p

qq

p p

qq

open

read

close

forward

send1

answer

write

send2

[cnd1]

[cnd2]

Priorities:
x 〈 y if y →x

Cyclic treatment
of emails

Final place

Initial place

s

x=P
x:=0

Synchronous Systems –Tick-Tock Component

tick tock

tick

tockτ

τ

s

x:int

x<P

x:=x+1

[x=P]
x:=0

Synchronous Systems –Tick-Tock Component

tick tock

tick

x:intx:=x+1

tock

update

tock
tick

update

[x=P]
x:=0

x:=x+1

tick tock

Synchronous Systems –Tick-Tock Component

s

tick1 tock1

s

tick2 tock2

s

tick3 tock3

tick1 tock1tick2 tock2tick3 tock3

[x1=P1]
x1:=0

tick1

x1:=x1+1

tock1tick2

update1

[x2=P2]
x2:=0

x2:=x2+1

tock2tick3

update2

[x3=P3]
x3:=0

x3:=x3+1

tock2tick3

update3

Synchronous Systems – Some Results

A MFG is called well-triggered if,
 each port has a unique minimal strong cause
 each port has exclusively either strong or weak dependencies
 each port with strong dependencies has its guard true

Well-triggered MFG can be decomposed:
 Strong dependencies, define a set of connected graphs
 Weak dependencies, express triggering of roots of these graph
 Conditional dependencies, relate ports of different graphs

Result:
Well-triggered MFG are
deadlock-free and confluent

Synchronous Systems – Translating Simulink into BIP

 Experimental results are obtained for discretized demo examples of
MATLAB/Simulink

 For Simulink, executable code is obtained using Real-Time Workshop

Simulink2BIP

uses

Simulink
model
(.mdl)

.bip

.C

BIP2C

.exeg++

simulinkLib.bip

Example #A #P #T #E n RTW BIP

Anti-lock
breaking

39 2 - - 107 3.20 13.51

Steering
wheel

120 15 1 - 107 3.42 16.75

Thermal
model

45 3 - - 107 5.20 9.62

64-bit
counter

365 - 60 - 107 53.65 31.11

Enabled
Subsystem

24 - - 2 107 3.20 3.45

Multi
Period

14 - - 1 107 4.01 3.65

#A: atomic blocks, #P: periodic subsystems, #T: triggered
subsystems, #E: enabled subsystems, n: iterations,
execution times for Real Time Workshop (RTW) and BIP (secs)

O
V
E
R
V
I
E
W

121

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

SW Componentization – The Dala Robot

Dala ATRV (iRobot)
 Size (L x W x H): 105cm x 80cm x 100cm
 Weight :120 kg
 Mobility system: 4 driving wheels
 Mobility performances:

Max speed: 2 m/s
Power supply:Batteries 24V, 1440W

 Payload
 Sensors:

 odometry,
 12 Sonars,
 1 Sick® laser range finder,
 2 black and white IEEE1394 cameras,
 1 color IEEE1394 panoramic camera.

 Effectors:
 Pand and Tilt Unit (Direct Perceptive)

 Processors: 1 Intel Pentium IV
 Communication: IEEE802.11b wireless lan (11Mb/s)
 Operating system: Linux (2.6.10 kernel)

SW Componentization – The Dala Robot SW

SW Componentization – Methodology

…

…

B1 B2 Bn-1 Bn

Functional Layer

…

Hi
er

ar
ch

ic
al

 d
ec

om
po

sit
io

n
in

to
 c

om
po

ne
nt

s

Description of the behavior of atomic components

Co
m

po
sit

io
n

of
 a

to
m

ic
 c

om
po

ne
ne

ts
us

in
g

on
ly

 g
lu

e

Functional and Control Level

ModuleModule

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Poster Poster

Functional and Control Level ::= Module+

Module ::= Service+ . Poster

Service ::= Service Controller . Service Task

Service Controller ::= Event Triggered Controller | Cyclic Controller

Cyclic Controller ::= Event Triggered Controller . Cyclic Trigger

Service Task ::= Timed Task | Untimed Task

SW Componentization – Methodology

Ready

Idle

Exec

Abort

trigger

request

interrupt

abort

abort
finish

trigger

interrupt abort requestfinish

Idle: the Service is idle

Ready: checks the possibility for
starting a new Task of the Service

Exec: execution of the Task of the
Service

Abort: Service is aborted

SW componentization – Event Triggered Controller

Cyclic Controller ::=
Event Triggered Controller . Cyclic Trigger

Exectick
count<p / count++ count == p / count = 0

trigger

trigger

tick
Cyclic Trigger

trigger

interrupt abort requestfinish

Event Triggered Controller

tick

interrupt abort finish request

The Cyclic Trigger starts the Event Triggered Controller every period p

SW componentization – Cyclic Controller

Triggered by request

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted

interrupt requestabort finish

Exec

Abort

Idle

request

interrupt
abort

finish

read

write

read

write

state

state
state

state

status

status := 1

SW componentization – Untimed Task

interrupt requestabort finish

Exec

Abort

Idle

request

abort

finish /status:=1

read
write

tick

read

tick
tick

write
count < t2 / count++

t1 ≤ count ≤ t2 state

state
state

state

status

/count:=0

interrupt

• Obtained from an Untimed Task
• Its execution time is in [t1,t2]

SW componentization – Timed Task

Untimed Event Triggered Service
::= Event Triggered Controller. Untimed Task

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Untimed Taskread

state
statestatuswrite

Untimed Event
Triggered Service

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Timed Task

read

state
statestatuswrite

tick

Timed Event Triggered Service

intrpt req abort finish

intrpt req abort finish

Cyclic Controller

Timed Task

read

state
statestatuswrite

tick

tick

tick

Cyclic Service

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

SW componentization – Different types of Services

A module composed of 3 services and a poster

Module

tick

offer

Exec
writeoffer

offer write
data

Poster

read

req okabortintrpt
tick read

tick

write

read

Cyclic Service

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

tick

tick

read tick

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

write
write

read

Untimed Event
Triggered Service

state
state
status state

state

state

state

readread

write
write status

req okabortintrpt

write

trigger

trigger

tick

status

Timed Event
Triggered Service

SW componentization – A Module

Reads and integrates data to provide an estimate of the
position of the robot

Pom ::= SetModel. AddME. SetRefME. Run. SetPos. Poster

trigger triggertrigger readticktrigger

Module Pom
write

offer
data

Poster

trigger

Run

trigger

SetRefME

trigger

AddME

trigger

SetModel

tick

write

SetPos

offer

state state state readrequestrequest request

SW componentization– Module Pom

Computes the relative displacement of the robot

trigger trigger readticktrigger

writeoffer
data

Poster

trigger

PixelChooserParam

trigger

Init

tick

UpdateImage

offer

trigger

tick

ComputeMotion

readwrite

trigger trigger

Module Steo

Steo ::=
Init. PixelChooserParam. ComputeMotion. UpdateImage. Poster

SW componentization – Module Steo

trigger ticktrigger

Module Camera
write

offer
data

Poster

trigger

ConfigureBank

trigger

offer

trigger

tick

OneShot

request

write

trigger

trigger

trigger

Tagging

state

Initialize

Camera ::= Tagging. ConfigureBank. Initialize. OneShot. Poster

SW componentization – Module Camera

Computes the stereo-correlation and produces 3D information
about the environment.

trigger tick

Module Scorrelwrite
offer
data

Poster

trigger

Init

offer

trigger

tick

SCorrelwrite

trigger

trigger

trigger

SetCorrelationParam

read

read

Scorrel ::= Init. SetCorrelationParam. SCorrel. Poster

SW componentization – Module Scorrel

SW componentization – Results

 functional level controller synthesis
 uses the multithreaded BIP execution engine
 replaces manually handwritten code
 the entire functional level is about 500 KLOC

 safety constraints are enforced by construction
 expressed using interactions and priorities
 no need to be monitored at runtime

 empirical tests show improved robustness against arbitrary fault
injections

SW componentization – Checking Deadlock-freedom

Modules Components Locations Interactions States LOC Minutes

LaserRF 43 213 202 220x329x34 4353 1:22
Aspect 29 160 117 217x323 3029 0:39
NDD 27 152 117 222x314x5 4013 8:16
RFLEX 56 308 227 234x335x1045 8244 9:39
Antenna 20 97 73 212x39x13 1645 0:14
Battery 30 176 138 222x317x5 3898 0:26
Heating 26 149 116 217x314x145 2453 0:17
PTU 37 174 151 219x322x35 8669 0:59
Hueblob 28 187 156 212x310x35 3170 5:42
VIAM 41 227 231 210x36x665 5099 4:14
DTM 34 198 201 228x320x95 4160 13:42
Stereo 33 196 199 227x320x95 3591 13:20
P3D 50 254 219 213x35x54x629 6322 3:51
LaserRF+Aspect+NDD 97 523 438 258x366x85 1139

5
40:57

NDD+RFLEX 82 459 344 256x349x52x209 1225
7

73:43

O
V
E
R
V
I
E
W

138

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

HW-driven refinement – The Design Flow

DOLApplication SW Mapping Architecture

Application
SW Model

HW
Architecture

Model

System
Model

Translation

Transformation

HW
Component

Library

HdS
Component

Library

Translationdol2bip template gen

bipWeaverNative BIP
Simulation

In
pu

t
Sy

st
em

 M
od

el
 G

en
er

at
io

n

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIP
Simulation

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi-
threaded

application
code

HdS
Code

Pe
rfo

rm
an

ce
 E

va
lu

at
io

n

HW-driven refinement – Building the Application SW Model

DOLApplication SW Mapping Architecture

Application
SW Model

HW
Architecture

Model

System
Model

Translation

Transformation

HW
Component

Library

HdS
Component

Library

dol2bip

In
pu

t
Sy

st
em

 M
od

el
 G

en
er

at
io

n

Native BIP
Simulation

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIP
Simulation

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi-
threaded

application
code

HdS
Code

Pe
rfo

rm
an

ce
 E

va
lu

at
io

n

HW-driven refinement – Building the Application SW Model

 Every process and every sw-channel are
independently translated to atomic components in
BIP

● Connectors are generated from connections of the process network

generator C1 square C2 consumer

generator

OUT

consumer

IN

FIFO

recv

send

square

OUT

IN

FIFO

recv

send

#define IN 1
#define OUT 2
typedef struct _local_states {
int index;
int len;

} Square_state;
void square_init(DOLProcess *p) {

p->local->index = 0;
p->local->len = LENGTH;

}
int square_fire(DOLProcess *p) {

float I;
if (p->local->index < p->local->len) {

DOL_read((void*)IN, &i, sizeof(float), p);
i = i*i;
DOL_write((void*)OUT, &i, sizeof(float), p);
p->local->index++;

}
if (p->local->index >= p->local->len) {

DOL_detach(p);
return -1;

}
return 0;

}

OUT

L1

L2 L3

L4L5
τ

[index<len]
address=&i;

size=sizeof(float);

OUT
index++;

IN

τ
i=i*I;
address=&i;
size=sizeof(float);

τ
[index<len]

index=0;
len=LENGTH;

IN

var: index, len, i, address, size;

size
address

size
address

recv

L1

recv
[count<N]

buff[i]=x;count++;
i=(i+1)%N;

i=0; j=0;count=0;

send

var: x, y, i, j, count, buff[N];

x

y
send
[count>0]
y=buff[j];count--;
j=(j+1)%N;

HW-driven refinement – Building the HW Model

DOLApplication SW Mapping Architecture

Application
SW Model

HW
Architecture

Model

System
Model

template gen

HdS
Component

Library

Translation HW
Component

Library

In
pu

t
Sy

st
em

 M
od

el
 G

en
er

at
io

n

Native BIP
Simulation

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIP
Simulation

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi-
threaded

application
code

HdS
Code

Pe
rfo

rm
an

ce
 E

va
lu

at
io

n

Transformation

HW-driven refinement – Building the HW Model

Collection of hw-processor, memory and bus components
connected as defined in the architecture
 HW-processor and HW-memory are placeholders
 uses HW component library

Shared
Mem
(SM)

Shared Bus

Tile1
ARM1

Local
Mem
(LM1)

Local Bus (LB1)

Tile2
ARM2

Local
Mem
(LM2)

Local Bus (LB2)

ARM1

LM1

ARM2

LM2

Bus-
Path

Bus-
Path

SM

Local Bus (LB1) Local Bus (LB2)

Shared Bus

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

HW-Bus-
Scheduler

HW-Bus-
Scheduler

HW-driven refinement – Building the System Model

DOLApplication SW Mapping Architecture

Application
SW Model

HW
Architecture

Model

System
Model

template gen

bipWeaver

HW
Component

Library

Translation

HdS
Component

Library

In
pu

t
Sy

st
em

 M
od

el
 G

en
er

at
io

n

Native BIP
Simulation

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIP
Simulation

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi-
threaded

application
code

HdS
Code

Pe
rfo

rm
an

ce
 E

va
lu

at
io

n

HW-driven refinement – Building the System Model

ARM1

LM1

HW-Bus-
Scheduler

ARM2

LM2

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

SM

Local Bus (LB1) Local Bus (LB2)

Shared Bus

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

Bus-
Path

HW-Bus-
Scheduler

generator square consumer

F
W FR F

W FR

HW-CPU-
Scheduler

HW-CPU-
Scheduler

Buffer

Buffer

SM

Shared Bus

Tile1
ARM1

LM1

LB1

Tile2
ARM2

LM2

LB2

generator consumerFIFOsquareFIFO

 Transformations defined by the
mapping specify how to fill up the
HW model
 fully preserve functional behavior
 use HdS component library

Transformation on sw model:
 Splitting SW-channels
 Breaking atomic read/write
 Adding interactions with HW-CPU-
Scheduler
 FIFO buffers mapped to memory

generator square consumer

SW

HdS

HW

FW FR FW FR

HW-CPU-
Scheduler

HW-CPU-
Scheduler

HW-driven refinement – MJPEG decoder

The MJPEG decoder

reads a sequence of frames and displays the decompressed
frames

is described as a process network with five processes and nine
communication channels

HW-driven refinement – MPARM Architecture

A simplified Multi-Processor ARM (MPARM)
 Five identical tiles and a Shared Memory connected via a Shared Bus.
 Tiles contain a CPU connected to its Local Memory via a Local Bus.
 CPU frequency: 200 Mhz.
 Access times: 2 CPU cycles for local memory

6 CPU cycles for shared memory

Shared
Mem
(SM)

Shared bus (SB)

Tile1
ARM1

Local
Mem
(LM1)

Local Bus (LB1)

Tile2
ARM2

Local
Mem
(LM2)

Local Bus (LB2)

Tile5
ARM5

Local
Mem
(LM5)

Local Bus (LB5)

HW-driven refinement – MJPEG decoder: Results

ARM1 ARM2 ARM3 ARM
4

ARM5

Mapping1 all
Mapping2 SS, SF, IQ MF, MS
Mapping3 SS, SF IQ,MF,MS

Mapping4 SS, SF IQ MF, MS
Mapping5 SS, MS SF IQ MF
Mapping6 SS SF IQ MF MS
Mapping7 SS, SF IQ MF, MS
Mapping8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
Mapping1 all
Mapping2 C6, C7 C1, C2, C3, C4, C5 C8, C9
Mapping3 C3, C4, C5, C6 C1, C2 C7, C8, C9
Mapping4 C3, C4, C5, C6, C7 C1, C2 C8, C9
Mapping5 all
Mapping6 all
Mapping7 C6, C7 C1, C2, C3, C4, C5 C8, C9
Mapping8 C1, C2 C3, C4, C5, C6 C7 C8, C9

Process mapping table

SW-Channel mapping table

HW-driven refinement – MJPEG decoder: Results

Mapping (1) gives the worst computation time as all processes are mapped to a single
processor.

The communication overhead is reduced if we distribute sw-channels to the local
memories of the processors.

Communication delayComputation delay

HW-driven refinement – MJPEG decoder: Results

As more channels are mapped to the local memory, the shared bus contention is
reduced. However, this might increase the local memory contention, as is evident for
mapping (8).

Delay (waiting time) due to bus and memory conflict

O
V
E
R
V
I
E
W

151

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Distributed Implementation – From BIP to S/R-BIP

BIP is based on:
Global state semantics, defined by operational semantics rules,

implemented by the BIP Engine
Atomic multiparty interactions, e.g. by rendezvous or broadcast

Correct-by-construction translation of BIP models into observationally
equivalent S/R-BIP models
Point to point communication by asynchronous message passing
No global state - Atomicity of transitions is broken by separating

interaction from internal computation
The BIP Engine is replaced by a set of Engines executing subsets of

interactions
 Distributed coordination is orchestrated by an architecture

Distributed Implementation – From BIP to S/R-BIP

 Before reaching a ready state, the set of the enabled ports is sent to the Engine
 From a ready state, await notification from the Engine indicating the selected port

a ga

a b

Global state model

fa fb
S2S

S2S

S2S

b gb
a ga

a

o{a,b}

bo{a,b}

Partial state model

fa fb

b gb

Transformation of atomic components

Distributed Implementation – Single Engine

BIP Model
a1 a2 a3

a1< a2< a3

One Engine executes all interactions !

C1 C2 C3 C4

C’1 C’2 C’3 C’4

Enginea1

a1< a2< a3
a2 a3

Distributed Implementation – Multiple Engines

Dispatch interactions across multiple engines !

Engine Engine

BIP Model

a1 a2 a3

a1 a2 a3

C1 C2 C3 C4

C’1 C’2 C’3 C’4

Semantics Violation

Distributed Implementation – Conflicting Interactions

α1 α2

α1 and α2 depend
on conflicting
transitions

α1 # α2: the interactions α1 and α2 may be in conflict

p q

p q

α1 α2

α1 and α2 share a
common port p

p

Distributed Implementation – Conflict-Free Multiple Engines

α1 α2 α3
α1 # α2 # α3

α4 α6α5
α4 # α5 # α6

 Each engine handles interactions of a class of #*

Engine

α1

α2
α3 Engine

α4

α5 α6

Distributed Implementation – Limitations

Engine

 Taking #* may reduce drastically parallelism between interactions

Distributed Implementation – 3-Layer Architecture

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed
Execution
Engine

Interface Interface Interface Interface Interface

I1

I2

I3

Distributed Implementation – 3-Layer Architecture

[g1]
p1
f1()

[g2]
p2
f2()

p1 p2
S2S

S2S

S2S

p2

p1
f1() ; n++;

p2
f2() ; n++;

offer(n,p1,g1,p2,g2)

offerp1

n: counts the number
of executed transitions

Transformation of atomic components

R. Bagrodia. A distributed algorithm to implement nparty rendevouz, FSTTCS 1987

Distributed Implementation – 3-Layer Architecture

S2S

S2S

S2S

C1 C6C3 C5C2 C4

α1

α2

α3

α4

C1
Protocol

offer port

C2
Protocol

C3
Protocol

C4
Protocol

C5

Protocol

C6

Protocol

Interaction Protocol

offerport

α1

α2

Interaction Protocol

offerport

α3

α4

Conflict Resolution
Protocol

reserveok

CR
Protocol
Model

fail

Conflict Resolution
Protocol

reserveok fail

S2S

S2S

S2S

α1

offer port offer port offer port offer port offer port

[α1α2][α3α4]

reserveok fail reserveok fail

Distributed Implementation – 3-Layer Architecture

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4

Interaction Protocol

α1

α2 Interaction Protocol

α3

α4

o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

Centralized Conflict Resolution Protocol

reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

C1 C6C3 C5C2 C4

α1 α2 α3

α4

Distributed Implementation – Centralized CRP

reserve α1 reserve α2

[success α1]
ok α1

update (N,α1)

[not success α1]

fail α1

[success α2]
ok α2

update (N,α2)

[not success α2]

fail α2

N=[N1, …, Nk]: keeps track of the state of the counters n of the components

reserve α1 reserve α2
ok α1 ok α2fail α1 fail α2

Distributed Implementation – Token Ring CRP

Interaction Protocol

α1

α2 Interaction Protocol

α3

α4

reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

C1 C6C3 C5C2 C4

α1 α2 α3

α4

Token Ring
CRP

Token Ring
CRPRTST

Token Ring
CRPRTST

RT ST

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

Distributed Implementation – Dining Philosophers CRP

Interaction Protocol

α1

α2 Interaction Protocol

α3

α4

reserve2 ok2 fail2 reserve3 ok3 fail3 reserve4 ok4 fail4

C1 C6C3 C5C2 C4

α1 α2 α3

α4

Dining
Philosophers

CRP Dining
Philosophers

CRP

Dining
Philosophers

CRP

SF1
RF1
SR1
RR1
SF2
RF2
SR2
RR2

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

Distributed Implementation – Design Flow

C
1

C
6

C
3

C
5

C
2

C
4

α1

α2

α3

α4

Conflict
Resolution
Protocol

Partitioning of
Interactions

S2S

S2S

S2S

p
1

d
p
1

C1’ C2’ C4’

d
p
2

d
p
5

d
p
6

o
1

o
2

o
4
1

p
2

p
5

p
6

Interacti
on

Protocol

α1

α2
Interaction Protocol

α3

α4

o
4
2

C5’

d
p
7

d
p
8

o
5
1

p
7

p
8

o
5
2

C6’

d
p
9

d
p
1
0

o
6

p
5

p
6

re
se
rv
e
2

o
k
2

fa
il
2

C3’

Dining Philo. Conflict Resolution
Protocol

Partitioning of
Components S2S

S2
S

S2
S

Component 1 129.2.2.1 Core1
Component 2 129.2.2.1 Core3

Component 3 129.2.2.1 Core2

Core1 Core2

Core3 Core4

CHIP

Core1 Core2

Core3 Core4

CHIP

Sockets/C+
+

Code

MPI/C++
Code

Code
Generator

S2S

S2
S

S2
S

p
1

d
p
1 C1’ C3’C2’ C4’

d
p
2

d
p
3

d
p
4

d
p
5

d
p
6

o
1

o
2

o
3

o
4
1

p
2

p
3

p
5

p
6

p
4

o
4
2 C5’

d
p
7

d
p
8

o
5
1

p
7

p
8

o
5
2 C6’

d
p
9

d
p
1
0

o
6

p
5

p
6

o
k
3

f
a
i
l
3

r
e
s
e
r
v
e
4

f
a
i
l
4

Dining
Philo. CRP

Dining
Philo. CRP

Interaction
Prot. α1 α2

Interaction
Prot. α3 α4

Dining
Philo. CRP

Distributed Implementation – Example

The UTOPAR system is an automated transportation system
proposed by Israel Aircraft Industries in the COMBEST EU
project

Distributed Implementation – Example

request

enter

exit

destination

exiti=1,N

departurei=1,
Nopeni=1,N

awakei=1,N

destinationi=1,N
posChangedi=
1,Narrivali=1,N
closei=1,N

enteri=1,N

enterk,,i=1,M*1,M

requestk,,i=1,M*1,
M

close
arrival

posChanged
destination

awake
open

departure

request

User(*)

CallingUnit
(M*M)

Ucar
(N)

Central
Station

(1)

openi=1,N

UTOPAR model in BIP

Distributed Implementation – Example

Benchmarks for fully automated generation of distributed C++ code
for Linux sockets

25 = 5 * 5 calling units and 4 cars –
29 Interaction Protocols

49 = 7 * 7 calling units and 4 cars –
53 Interaction Protocols

Distributed Implementation – Further Developments

Priorities:
BIP model with priorities can be transformed into an equivalent model
without priorities. The same implementation principle can be applied

Optimization issues:
 Building a correct snapshot of the system state is possible, but induces a
lot of communication
 Knowledge-based optimization by detecting false conflicts
 Optimizing observability of interaction protocols (for priorities)

 Code optimization for components implemented on the same site
 Replace a composite component by a single flattened component from
which sequential monolithic code can be generated

Distributed Implementation – Monolithic Code Generation

O
V
E
R
V
I
E
W

172

 System Design
 Rigorous System Design

 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 The BIP Framework
 Modeling in BIP
 The BIP toolset
 Compositional Verification
 Synchronous Systems
 SW Componentization
 HW-driven Refinement
 Distributed Implementation

 Discussion

Discussion – Breaking with Old Ideas

 New trends break with traditional Computing
Systems Engineering - Goodbye to desktop
applications and their ilk

 Too much of research in software engineering,
systems, formal methods, etc. never made it
in practice because it assumed a
"design from scratch" approach and
correctness-by-checking

 Formal methods
 can only partially contribute to enhancing trustworthiness and

optimality
 are limited to systems and properties that can be formalized and

checked efficiently e.g. functional properties of SW components

Discussion – Rigorous System Design

New approach for the design of
trustworthy and optimized systems

 Endeavors unification through
formalization of design as a process
 for deriving trustworthy and

optimal implementations from an
application software and models
of its execution platform and
physical environment

 which is semantically sound,
incremental, scalable
and accountable

Opens the way for moving from ad hoc and empirical design techniques
to a well-founded design discipline

Discussion – About BIP

The BIP component framework has been developed for more than 10 years,
with Rigorous Design in mind

 Translation of DSL (Simulink, Lustre, DOL, nesC) into BIP

 Source-to-source transformations proven correct-by-construction
 taking into account HW resources
 generating distributed implementations for several platforms
 code optimization

 Run-times for centralized execution/simulation, distributed execution,
real-time execution

 Validation and analysis tools
 Incremental checking for Deadlock-freedom: D-Finder tool
 Statistical Model Checking

 Successful application in many industrial projects
 software componentization for robotic systems (DALA Space Robot for

Astrium)
 programming multi-core systems (P2012 for STM, MPPA for Kalray)
 complex systems modeling (AFDX and IMA for Airbus)

Discussion – A System-Centric Vision for CS

System Design

 Raises a multitude of deep theoretical problems such as the
conceptualization of needs in a given area and their effective
transformation into correct artifacts.

 has attracted little attention from scientific communities and is relegated
to second class status
 design is by its nature multi-disciplinary and requires consistent
integration of heterogeneous system models supporting different levels
of abstraction including logics, algorithms and programs as well as
physical system models.

 is central to CS. Awareness on its centrality is a chance to reinvigorate
CS research and build new scientific foundations matching the needs
for increasing system integration and new applications

Discussion – A System-Centric Vision for CS: The Frontiers

Logic
Mathematics

BiologyPhysics Computer
Science

Discussion – A System-Centric Vision for CS: The Frontiers

The Physical Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Cyber-Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Integrated Circuit

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing
up-and-down the abstraction hierarchy

Ecosystem

Discussion – A System-Centric Vision for CS: The Frontiers

179

• Deals with phenomena of
the « real » physical
world (transformations of
matter and energy)

• Focuses mainly on the
discovery of physical
laws.

• Physical systems –
Analytic models

• Continuous mathematics

• Differential equations -
robustness

• Predictability for classical
Physics

• Mature discipline

Physics

• Deals with the
representation and
transformation information

• Focuses mainly on the
construction of systems

• Computing systems –
Machines

• Discrete mathematics –
Logic

• Automata, Algorithms,
Complexity Theory

• Verification, Testing,

• Young fast evolving
discipline

Computer Sc.

Discussion – A System-Centric Vision for CS: The Frontiers

Artificial vs. Natural Intelligence
Living organisms intimately combine interacting physical and computational
phenomena that have a deep impact on their development and evolution
 Shared characteristics with computing systems

 use of memory
 distinction between hardware and software
 use of languages

 Remarkable differences :
 robustness of computation
 built-in mechanisms for adaptivity
 emergence of abstractions – concepts

Interactions and cross-fertilization
 Non von Neumann computing ⇐ Neuromorphic, Cognitive Computing
 CAD methods&tools ⇒ Synthetic Biology

Discussion – Looking for Foundations

Theoretical research in CS often focuses on “nice theory” that is not
always practically relevant

…. while practitioners propose ad hoc frameworks hardly amenable
to formalization e.g. non-orthogonal concepts, ambiguous semantics

“….. in the academic world the theories that are more likely to attract
a devoted following are those that best allow a clever but not very
original young man to demonstrate his cleverness.”

“Perfection is reached not when there is no longer anything to add,
but when there is no longer anything to take away”

“Make everything as simple as possible, but not simpler”

Discussion – Looking for Foundations

Is it possible to find a mathematically elegant and still practicable
theoretical framework for system design?

"The most incomprehensible
thing about the world is that
it is at all comprehensible."

The key issue is discovering
laws governing phenomena

Physics and Biology study a given “reality”

Computer Science mainly deals with building systems (artifacts)

The key issue is building
correct systems
cost-effectively

Discussion – Looking for Foundations

We mold the
conditions
of existence of
the cyber-world

Is everything for the best
in the best of all possible

cyber-worlds ?

The physical world
is part of our
conditions of
existence

Publications

Saddek Bensalem, Marius Bozga, Joseph Sifakis, Thanh-Hung Nguyen. "Compositional
Verification for Component-Based Systems and Application". ATVA 2008: 64-79
Simon Bliudze, J. Sifakis. A Notion of Glue Expressiveness for Component-Based Systems.
In Proc. of the 19th International Conference on Concurrency Theory (CONCUR'08), LNCS
5201, 508–522, Springer, 2008.
Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen, Saddek Bensalem,
Felix Ingrand and Joseph Sifakis. "Incremental Component-Based Construction and Verification
of a Robotic System." ECAI 2008 The 18th European Conference on Artificial Intelligence,
Patras, Greece, July 21 - 25, 2008.
Simon Bliudze, J. Sifakis. The Algeba of Connectors—Structuring Interaction in BIP. IEEE
Transactions on Computers, vol. 57, no. 10, pp. 1315–1330, October, 2008.
A. Basu, Ph. Bidinger, M. Bozga and Joseph Sifakis. Distributed Semantics and
Implementation for Systems with Interaction and Priority FORTE, 2008, pp. 116-133.
T.A. Henzinger and J. Sifakis. The Discipline of Embedded Systems Design Computer,
October 2007, pp. 32-40.
S. Bliudze, J. Sifakis. The Algebra of Connectors – Structuring Interaction in BIP Proc.
EmSoft07, ACM&IEEE, Oct. 1-3, 2007, Salzburg, Austria, pp. 11-20.

Publications (2)

A. Basu, L. Mounier, M. Poulhiès, J. Pulou and J. Sifakis. Using BIP for Modeling and
Verification of Networked Systems - A Case Study on TinyOS-based Networks Sixth IEEE
International Symposium on Network Computing and Applications (NCA 2007), 12 - 14 July
2007, Cambridge, MA, USA, pages 257-260.
G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, J. Sifakis. An Approach to Modeling
and Verification of Component Based Systems in Current Trends in Theory and Practice of
Computer Science, SOFSEM'07, LNCS 4362, 2007.
G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, J. Sifakis. Ensuring Properties of
Interaction Systems by Construction,Program Analysis and Compilation, Theory and Practice,
LNCS, 2007.
A. Basu, M. Bozga, J. Sifakis. Modeling Heterogeneous Real-time Systems in BIP
4th IEEE International Conference on Software Engineering and Formal Methods
(SEFM06),Invited talk, September 11-15, 2006, Pune, pp. 3-12.
M. Poulhiès, J. Pulou, C. Rippert and J. Sifakis. A Methodology and Supporting Tools for the
Development of Component-Based Embedded Systems, 13th Monterey Workshop 2006, Paris,
October 2006, pp. 75-96, LNCS 4888
T.A. Henzinger and J. Sifakis. The Embedded Systems Design Challenge Invited Paper, FM
2006, pp. 1-15.

Thank You

	 Rigorous �System Design in BIP
	From Programs to Systems – The Evolution of IST
	Reactive Systems – The Hardest and the Most Important
	Reactive Systems – The Hardest and the Most Important
	System Design – An Increasing Gap
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	System Design – Productivity vs. Correctness
	System Design – Productivity
	System Design – Productivity vs. Correctness
	System Design – Correctness
	System Design – Trustworthiness vs. Optimization
	Slide Number 15
	System Design – Correctness-by-Checking: Limitations
	System Design – The V-model
	System Design – The V-model
	System Design – The V-model
	Slide Number 20
	Slide Number 21
	Rigorous System Design – Simplified Flow
	Rigorous System Design – Simplified Flow
	Rigorous System Design – Is it attainable?
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Component-based Design – Heterogeneity
	Component-based Design – Heterogeneity
	Component-based Design – Heterogeneity
	Component-based Design – Heterogeneity
	Component-based Design – Heterogeneity
	Slide Number 38
	Component-based Design – The Concept of Glue
	Component-based Design – Glue Operators
	Component-based Design – Glue Operators
	Component-based Design – Glue Operators: Example
	Component-based Design – Glue Operators: Properties
	Component-based Design – Glue Operators: Expressiveness
	Component-based Design – Glue Operators: Expressiveness
	Component-based Design – Glue Operators: Expressiveness
	Component-based Design – Glue Operators: Expressiveness
	Slide Number 48
	Rigorous System Design – Semantic Coherency
	Slide Number 50
	Semantic Coherency
	Rigorous System Design – Semantic Coherency
	Rigorous System Design – Semantic Coherency
	Rigorous System Design – Semantic Coherency
	Rigorous System Design – Semantic Coherency
	Slide Number 56
	Slide Number 57
	Correct-by-Construction – Building Correct Components
	Correct-by-Construction – Architectures
	Correct-by-Construction – Architectures
	Correct-by-Construction – Architectures
	Correct-by-Construction – Architectures
	Correct-by-Construction – Architectures: Composability
	Correct-by-Construction – Architectures: Composability
	Correct-by-Construction: Refinement
	Rigorous System Design – Correctness-by-Construction for 
	Rigorous System Design – Correctness-by-Construction for 
	Slide Number 68
	Putting RiSD into Practice – System Design in BIP
	Modeling in BIP – Basic Concepts
	Modeling in BIP – Semantics
	Slide Number 72
	Modeling in BIP – Connectors
	Modeling in BIP – Connectors
	Modeling in BIP – Connectors
	Modeling in BIP – Connectors
	Modeling in BIP –The Algebra of Connectors
	The Algebra of Connectors – Boolean Representation
	Modeling in BIP – Priorities
	Modeling in BIP – Priorities: FIFO policy
	Modeling in BIP – Priorities: EDF policy
	Modeling in BIP – Priorities: Composability
	Modeling in BIP – Priorities: Composability
	Modeling in BIP – Priorities: Mutual Exclusion + FIFO policy
	Modeling in BIP – Priorities: Example
	Modeling in BIP – The Language
	Modeling in BIP – The Language
	Modeling in BIP– Approaches encompassing heterogeneity
	Modeling in BIP – System Construction Space
	Modeling in BIP – System Construction Space
	Modeling in BIP– System Construction Space: Incrementality
	Slide Number 92
	The BIP Toolset – Overview
	The BIP Toolset – Overview
	The BIP Toolset – The Execution Engine
	The BIP Toolset – The Execution Engine
	The BIP Toolset – The Execution Engine
	The BIP Toolset – The RT Execution Engine
	The BIP Toolset – The RT Execution Engine
	The BIP Toolset – The RT Execution Engine
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Compositional Verification – Interaction Invariants
	Slide Number 105
	Slide Number 106
	Compositional Verification – Incremental Verification
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Synchronous Systems – Modal Flow Graphs
	Synchronous Systems – Modal Flow Graphs vs. Petri nets
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Synchronous Systems – Some Results
	Slide Number 120
	Slide Number 121
	SW Componentization – The Dala Robot
	SW Componentization – The Dala Robot SW
	SW Componentization – Methodology
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	HW-driven refinement – The Design Flow
	HW-driven refinement – Building the Application SW Model
	HW-driven refinement – Building the Application SW Model
	HW-driven refinement – Building the HW Model
	HW-driven refinement – Building the HW Model
	HW-driven refinement – Building the System Model
	HW-driven refinement – Building the System Model
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Distributed Implementation – From BIP to S/R-BIP
	Distributed Implementation – From BIP to S/R-BIP
	Distributed Implementation – Single Engine
	Distributed Implementation – Multiple Engines
	Distributed Implementation – Conflicting Interactions
	Distributed Implementation – Conflict-Free Multiple Engines
	Distributed Implementation – Limitations
	Distributed Implementation – 3-Layer Architecture
	Distributed Implementation – 3-Layer Architecture
	Distributed Implementation – 3-Layer Architecture
	Distributed Implementation – 3-Layer Architecture
	Distributed Implementation – Centralized CRP
	Distributed Implementation – Token Ring CRP
	Distributed Implementation – Dining Philosophers CRP
	 Distributed Implementation – Design Flow
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Discussion – Breaking with Old Ideas
	Discussion – Rigorous System Design
	Discussion – About BIP
	Discussion – A System-Centric Vision for CS
	Discussion – A System-Centric Vision for CS: The Frontiers
	Discussion – A System-Centric Vision for CS: The Frontiers
	Discussion – A System-Centric Vision for CS: The Frontiers
	Discussion – A System-Centric Vision for CS: The Frontiers
	Discussion – Looking for Foundations
	Discussion – Looking for Foundations
	Discussion – Looking for Foundations
	Publications
	Publications (2)
	Thank You

