
Specification and Validation

of Autonomous Driving Systems:

A Multilevel Semantic Framework

Marius Bozga<�)E, and Joseph SifakisG,

Check for
updates

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
{Marius.Bozga,Joseph.Sifakis}@u.niv-grenoble-alpes.fr

http://www-verimag.imag.fr/

Abstract. Autonomous Driving Systems (ADS) are critical dynamic
reconfigurable agent systems whose specification and validation raises
extremely challenging problems. The paper presents a multilevel seman
tic framework for the specification of ADS and discusses associated val
idation problems. The framework relies on a formal definition of maps
modeling the physical environment in which vehicles evolve. Maps are
directed metric graphs whose nodes represent positions and edges repre
sent segments of roads. We study basic properties of maps including their
geometric consistency. Furthermore, we study position refinement and
segment abstraction relations allowing multilevel representation from
purely topological to detailed geometric. We progressively define first
order logics for modeling families of maps and distributions of vehicles
over maps. These are Configuration Logics, which in addition to the usual
logical connectives are equipped with a coalescing operator to build con
figurations of models. We study their semantics and basic properties.
We illustrate their use for the specification of traffic rules and scenar
ios characterizing sequences of scenes. We study various aspects of the
validation problem including run-time verification and satisfiability of
specifications. Finally, we show links of our framework with practical
validation needs for ADS and advocate its adequacy for addressing the
many facets of this challenge.

Keywords: Autonomous Driving System · Map modeling ·
Configuration logic · Traffic rule specification · Scene and scenario
description · Runtime verification · Simulation and validation in the
large

1 Introduction

The validation of ADS raises challenges far beyond the current state of the art
because of their overwhelming complexity and the integration of non-explainable
AI components. Providing sufficient evidence that these systems are safe enough

Institute of Engineering Univ. Grenoble Alpes.

© Springer Nature Switzerland AG 2022
J.-F. Raskin and K. Chatterjee (Eds.): Principles of Systems Design, LNCS 13660, pp. 85-106, 2022.
https: / / doi.org/ 10 .1007 /978-3-031-22337-2_5

86 M. Bozga and J. Sifakis

is a hot and critical need, given the underlying economic and societal stakes.
This objective mobilizes considerable investments and efforts by key players
including big tech companies and car manufacturers. The efforts focus on the
development of efficient simulation technology and common infrastructure for
modelling the physical environment of ADS and their desired properties. They
led in particular to the definition of common formats such as OpenDRIVE [1] for
the description of road networks, and OpenSCENARIO [2] for the description
of complex, synchronized maneuvers that involve multiple entities like vehicles,
pedestrians and other traffic participants. Additionally, several open simulation
environments such as CARLA [9] and LGSVL [23] are available for modelling
and validation.

The paper proposes a semantic framework for the specification and validation
of ADS. The framework provides a precise semantic model of the environment
of ADS based on maps. It also includes logics for the specification and validation
of properties of the semantic model and of the system dynamic behavior. Maps
have been the object of numerous studies focusing on the formalization of the
concept and its use for the analysis of ADS. A key research issue is to avoid
monolithic representations and build maps by composition of components and
heterogeneous data. This motivated formalizations using ontologies and logics
with associated reasoning mechanisms to check consistency of descriptions and
their correctness with respect to desired properties [3, 5] or to generate scenarios
[3, 7]. Other works propose open source map frameworks for highly automated
driving [1, 19].

A different research line focuses on the validation of ADS either to verify sat
isfaction of safety and efficiency properties or even to check that vehicles respect
given traffic rules. Many works deal with safety verification in a simple multilane
setting. In [16] a dedicated Multi-Lane Spatial Logic inspired by interval tempo
ral logic is used to specify safety and provide proofs for lane change controllers.
The work in [21] presents a motion planner formally verified in Isabelle/HOL.
The planner is based on manoeuver automata, a variant of hybrid automata,
and properties are expressed in linear temporal logic.

Other works deal with scenarios for modeling the behavior of ADS. Open
SCENARIO [2] defines a data model and a derived file format for the description
of scenarios used in driving and traffic simulators, as well as in automotive virtual
development, testing and validation. The work in [8] proposes a visual formal
specification language for capturing scenarios inspired from Message Charts and
shows possible applications to specification and testing of autonomous vehicles.
In [24] a scenario-based methodology for functional safety analysis is presented
using the example of automated valet parking. The work in [14] presents an
approach to automated scenario-based testing of the safety of autonomous vehi
cles, based on Metric Temporal Logic. Finally, the probabilistic language Scenic
for the design and analysis of cyber physical systems allows the description of
scenarios used to control and validate simulated systems of self-driving cars.
The Scenic programming environment provides a big variety of constructs mak
ing possible modeling anywhere in the spectrum from concrete scenes to broad
classes of abstract scenarios [13].

Specification and Validation of Autonomous Driving Systems 87

Other works focus on checking compliance of vehicles with traffic rules. A for
malization of traffic rules in linear temporal logic is proposed in [11]. Runtime
verification is applied to check that maneuvers of a high-level planner comply
with the rules. Works in [20, 22] formalize a set of traffic rules for highway scenar
ios in Isabelle/HOL; they show that traffic rules can be used as requirements to
be met by autonomous vehicles and propose a verification procedure. A formal
ization of traffic rules for uncontrolled intersections is provided in [18] using the
CLINGO logic programming language. Furthermore, the rules are applied by a
simulator to safely control traffic across intersections. The work in [12] proposes
a methodology for the formalization of traffic rules in Linear Temporal Logic;
it is shown how evaluation of formalized rules on recorded drives of humans
provides insight on what extent drivers respect the rules.

This work is an attempt to provide a minimal framework unifying the con
cepts for the specification of ADS and the associated validation problems. The
proposed semantic framework clearly distinguishes between a static part con
sisting of the road network with its equipment and a dynamic part involving
objects. We progressively introduce three logics to express properties of the
semantic model at different levels. The Metric Configuration Logic (MCL) allows
the compositional and parametric description of metric graphs. This is a first
order logic with variables ranging over positions and segments. It uses in addition
to logical connectives, a coalescing operator for the compositional construction
of maps from segments. A MCL formula represents configurations of maps shar
ing a common set of locations. We discuss a specification methodology and show
how various road patterns such as roundabouts, intersections, mergers of roads
can be specified in MCL.

The Mobile Metric Configuration Logic (M2CL) is an extension of MCL with
object variables and primitives for the specification of scenes as the distribution
of objects over maps. M2CL formulas can be written as the conjunction of for
mulas describing: i) static map contexts; ii) dynamic relations between objects;
iii) addressing relations between objects and maps. Last, we define Temporal
M2CL (TM2CL), a linear temporal logic whose atomic propositions are formu
las of M2CL. We illustrate the use of these logics for the specification of safety
properties including traffic rules as well as the description of dynamic scenarios.

Additionally, we study the validation of properties expressed in the three
logics and provide a classification of problems showing that validation of general
dynamic properties boils down to constraint checking on metric graphs. Checking
that a finite model satisfies a formula of MCL or M2CL amounts to eliminate
quantifiers by adequate instantiation of variables. We argue that satisfiability
of M2CL formulas can be reduced to satisfiability of MCL formulas which is an
undecidable problem. We identify a reasonably expressive decidable subset of
MCL and propose a decision procedure. Furthermore, we discuss the problem
of runtime verification of TM2CL formulas and sketch a principle of solution
inspired from a recent work with a similar configuration logic [10]. We complete
the presentation on ADS validation with an analysis of practical needs for a
rigorous validation methodology. We describe a general validation environment
and show how the proposed framework provides insight into the different aspects
of validation and related methodological issues.

88 M. Bozga and J. Sifakis

84m

IE 20m)I

100m

Fig. 1. A scenario example

To illustrate the specification and validation methodology based on the com
bined use of these three logics, let us consider a concrete example from [2] describ
ing a scenario involving three cars moving on a two-lane road with their speeds
and distances. We use MCL to describe the static environment in which the cars
move. In this example, it is a two-lane road, but in the general case it can be
a parametric map obtained by composing road segments. To describe a scene,
such as the distribution of vehicles on a map, we use M2CL formulas. In this
example, a scene is specified by the relative positions of the cars on the map
and their speeds. Finally, to specify system properties, which are sequences of
scenes, we use TM2CL. In this example, a scene sequence could be: car c2 passes
the ego car and moves to the right lane in front of it. The formulas in TM2CL

can be used to specify traffic rules that must be satisfied by vehicle maneuvers.
The paper is structured as follows. In Sect. 2, we study metric graphs and

their relevant properties for the representation of map models as well as the
logic MCL, its main properties and application for map specification. Section 3
deals with the study of logics M2CL and TM2CL and their application to the
specification of safety properties and the description of scenarios. Then, Sect. 4
discusses a classification of validations problems and approaches for their solu
tion. Section 5 concludes with a summary of main results and a discussion about
future developments. A long version of the paper is available in [6].

2 Metric Graphs and Metric Configuration Logic

2.1 Segments and Metric Graphs

Segments. We build contiguous road segments from a set S equipped with a
partial concatenation operator · : S x S ----+ S U { ..l} and a length norm 11-11 : S ----+

�2:o satisfying the following properties:

(i) associativity: for any segments s1, s2, s3 either both (s1 · s2) · s3 and s1 ·
(s2 · s3) are defined and equal, or both undefined;

(ii) length additivity wrt concatenation: for any segments s1, s2 whenever s1 · s2
defined it holds lls1 · s2II = llsill + lls2II ;

(iii) segment split: for any segment s and non-negative a1, a2 such that llsll =
a1 +a2 there exist unique s1, s2 such that s= s1 · s2, llsill = a1, lls2II = a2.

Specification and Validation of Autonomous Driving Systems 89

The last property allows us to define consistently a subsegment operation:
s [a1 , a2] is the unique segment of length a2 - a1 satisfying s = s1 · s [a1 , a2] · s2

where s1 , s2 are such that llsill = a1 , lls2 II = 11s11 - a2, for any 0:::; a1 < a2 < 11s11-
For brevity, we use the shorthand notation s[a, -] to denote the subsegment
s[a, 11s11]. Moreover, we define s1 � s2 iff s1 = s2 [0, a] for some non-negative a.

Segments will be used to model building blocks of roads in maps considering
three different interpretations. Interval segments simply define the length of a
segment. Curve segments define the precise geometric form of the trajectory of a
mobile object along the segment. Region segments are 2D-regions of given width
around a center curve segment.

Interval Segments. Consider Sinterval
def {[0, a] I a E IR�o}, that is, the set of

closed intervals on reals with lower bound 0, concatenation defined by [0, a1] ·
def def [0, a2] = [0, a1 + a2] and length II [0, a] II = a.

Curve Segments. Consider Scurve
def { c : [0, 1] -----+ IR2 I c(0) = (0, 0), c curve} U

{ E} that is, the set of curves that are continuous smooth 1 and uniformly progress
ing2 functions c, starting at the origin, plus a designated single point curve E. The
length is defined by taking respectively the length of the curve II ell

def f01

I c(t) I dt
and lld = 0. The concatenation c1 · c2 of two curves c1 and c2 is a partial oper
ation that consists in joining the final endpoint of c1 with the initial endpoint
of c2 provided the slopes at these points are equal. This condition preserves
smoothness of the curve c1 · c2 defined by c1 · c2 : [0, 1] -----+ IR2 where:

Note that in this definition, c1 and c2 are scaled on sub-intervals of [0, 1] respect
ing their length ratio. We additionally take c · E

def
E • c

def c, for any c. For
practical reasons, one can further restrict the set Scurve to curves of some form
e.g., finite concatenation of parametric line segments and circle arcs. That is, for
any a, r E IR�

0
, <p E IR, 0 E IR* the curves line[a, cp], arc[r, <p, 0] are defined as

line[a,cp](t) def (at coscp, at sincp) Vt E [0, 1]
arc[r, <p, 0] (t) def (r(sin(<p + t0) - sin <p), r(- cos(<p + t0) + cos <p)) Vt E [0, 1]

Note that a and r are respectively the length of the line and the radius of the
arc, <p is the slope of the curve at the initial endpoint and 0 is the degree of
the arc. Figure 2 illustrates the composition of three segments of this parametric
form.

1 the derivative c exists and is continuous on [O, l].
2 the instantaneous speed lei, that is, the Euclidean norm of the derivative is constant.

90 M. Bozga and J. Sifakis

c2 = arc[l, 10° , 160°]

ci = line[5, 10°]

Fig. 2. Curve segments and their composition

Region Segments. Consider Sregion
def

Scurve X IR;
0

, that is, the set of pairs
(c, w) where c is a curve and w a positive number, denoting respectively the
region center curve and the region width. Region segments can be concatenated
iff their curves can be concatenated and if their widths are equal, that is, (c1, w) ·

(c2, w)
def (c1 · c2, w) if c1 · c2 -=I- l__ The length of a region segment is defined as

the length of its center curve, ll(c, w)II def
llc ll-

Region segments can be equally understood as sets of points in IR2 defined
by algebraic constraints. More precisely, for any curve c and width w the
region segment (c,w) corresponds to the subset of IR2 defined as {c(t) + ,\ •
art�(��?)) I t E [0, 1], ,\ E [-�, �]} where ortho is the orthogonal opera-

tor on IR2 defined as ortho((a, b))
def

(-b, a). In particular, the region gen
erated by the curve line[a, <p] is a rectangle containing the set of points
{(atcos<p - .\ sin<p,at sin<p + .\ cos<p) It E [0,1],.\ E [-�,�]}. The region
generated by the curve arc[r, <p, 0] is a ring sector containing the set of points
{((r+.\)(sin(<p+t0) - r sin<p,-(r+.\) cos(<p+t0) +rcos<p) I t E [0,1],.\ E
[-�, �]}.

Metric Graphs. We use metric graphs G
def

(V, S, E) to represent maps,
where Vis a finite set of vertices, Sis a set of segments and E � V x S* x Vis a
finite set of edges labeled by non-zero length segments in S*. We also denote an

1 s I def def I def edge e = (v, s, v) EE by v ---+c v and we define •e = v, e• = v , e.s = s. For
def def + a vertex v, we define •v = { eie• = v} and v• = { ei•e = v }. We denote by E

ac

the finite set of non-empty acyclic3 directed paths with edges from E. We call
a metric graph strongly (resp. weakly) connected if a directed (resp. undirected)
path exists between any pair of vertices. A metric graph is called acyclic if at
most one path, directed or undirected, exist between any pairs of vertices.

We consider the set Pose
def VU {(e, a) I e EE, 0 <a< lle.s11} of pos itions

defined by a metric graph. Note that (e, 0) and (e, lle.s11) are respectively the
positions •e and e• . Moreover, a s-labelled ride between positions (e, a) and
(e', a') is an acyclic path denoted by (e, a) �G (e', a') and defined as follows:

(i) e = e', 0 < a � a' < lle.s11, s = e.s[a, a']
(ii) e = e', 0 < a' < a < lle.s11, e• =• e, s = e.s[a, -] · e.s[0, a'] -=I- l_

3 every edge occurs at most once in the path.

Specification and Validation of Autonomous Driving Systems 91

(iii) e = e', 0:::; a'< a:::; lle.sll, w E Ef
c
, e (/:. w, e• =•w, w• =•e,

s = e.s[a, -] • w.s • e.s[O, a'] -=I= l_
(iv) e -=I= e', e• =•e', s = e.s[a,-] · e'.s[O,a'] -=I= l_
(v) e -=I= e', w E Ef

c
, e,e' (/:. w, e• =•w, w• =•e', s = e.s[a,-]•w.s•e'.s[O,a'] -=I= l_

Figure 3 illustrates the five cases of the above definition for a simple graph
with segments s1, s2 and s3. Cases (i) and (ii) correspond to rides on the same
segment. Case (iii) corresponds to rides originating and terminating in fragments
of the same segment and also involving other segments between them. Finally
cases (iv) and (v) are rides originating and terminating at different segments.

p'

Fig. 3. Rides in metric graphs - cases (i)-(v) illustrated

We define the distance de between positions p, p' as O whenever p = p' or the
minimum length among all segments labeling rides from p to p' and otherwise
+oo if no such ride exists. It can be checked that de is an extended quasi-metric
on the set Pose and therefore, (Pose, de) is an extended quasi-metric space.

2.2 Properties of Metric Graphs

Contraction/Refinement. A metric graph G' = (V', S, E') is a contraction
of a metric graph G = (V, S, E) (or dually, G is a refinement of G'), denoted
by G C G', iff G is obtained from G' by transformations replacing some of its
edges e by acyclic sequences of interconnected edges e1 e2 .. . en while preserving
the segment labeling i.e., e.s = e1 .s · e2.s · ... · en.s. In Fig. 4, the graph on the
right is a contraction of the one on the left iff s12 = s14 · s45 · s52, s�

2
= s�

6
• s�

2

and s31 = s37 · s7s · ss1.

refinement

contraction

Fig. 4. Illustration of contraction/refinement on metric graphs

92 M. Bozga and J. Sifakis

Note that metric graphs where all vertices have input or output degree greater
than one cannot be contracted. Such vertices correspond to junctions (confluence
of divergence of roads) when metric graphs represent maps. The following propo
sition states some key properties on contraction/refinement of metric graphs.

Proposition 1. Let Con(G) def {G' I G CG' }, Ref (G) def {G' I G' CG} be
respectively the set of contractions, refinements of a metric graph G.

(i) the refinement relation C is a partial order on the set of metric graphs;
(ii) for any metric graph G, both (Con(G), C) and (Ref (G), C) are complete

lattices, moreover, (Con (G), C) is finite;
(iii) for any metric graphs G, G' if G C G' then (1) the labelled transition

systems (Pose, S, 'V'-te) and (Pose,, S, 'V'-te,) are strongly bisimilar and
(2) the quasi-metric spaces (Pose, de) and (Pose,, de,) are isometric;

Abstraction/Concretization. Consider S, S' as sets of segments associated
with respectively concatenation ·, -', and length norm 11-11, 11-11 '- A function a :
S -----+ S' is a segment abstraction if it satisfies the following properties: (i) length
preservation: 11s11 = lla(s)II', forall s ES (ii) homomorphism wrt concatenation:
a(s1 · s2) = a(s1) -' a(s2) for all s1, s2 E S such that s1 · s2 -=I- l__

· CI . CI
()

defFor example, the function a . Scurve -----+ Sinterval defined by a s
-

[O, 11s11] for all s E Scurve is a an abstraction of curve segments as interval seg-
ments. Similarly, the function aRC : Sregion -----+ Scurve defined by a RC ((s, w)) def

s for all (s, w) E Sregion is an abstraction of region segments as curve segments.
Dually, we can define concretization functions 'Y that go from intervals to

curves, and from curves to regions. For example, for any angles cp, 0 consider

"/�� : Sinterval -----+ Scurve where respectively, "(�� ([O, al) def arc[i, cp, 0] if 0 -=I- 0

or 'Y��([O, al) def line[a, cp] if 0 = 0. Or, for any positive real w consider 'YS'R :
CR () def () Scurve -----+ Sregions where 'Y
w

s = s, w .

Vl V2

V3 V4

Vl [O, a1] V2
[O, a2]

V3 [O, a3] V4

v1 c1 v2
-----------c,---�c2 V3 C3 V4

v1 Cci, w) v2
♦ - - - - - - - -+ - -0 (c2, wJ3 (c3, w) V4

\:� - -i+ - - - - - - - -c+

directed graph

interval metric graph

curve metric graph

region metric graph

Fig. 5. Illustration of abstraction/concretization on metric graphs

Given a segment abstraction a : S -----+ S', a metric graph G' = (V, S', E')
is an a-abstraction of a metric graph G = (V,S,E), denoted by G' = a(G),
iff G' is obtained from G by replacing segments s by their abstractions a(s).
That is, any edge u �e v is transformed into an edge u �e' v. In a similar

Specification and Validation of Autonomous Driving Systems 93

way, ')'-concretization on metric graphs is defined for a segment concretization
')' : S' ----+ S. Figure 5 illustrates the use of the three segment abstraction levels
(respectively as intervals, curves, regions) and their associated metric graphs.
Interval metric graphs are a01 -abstractions of curve metric graphs, which in
turn are a,

RC -abstractions of region metric graphs. Propositions 2 and 3 state
some key properties on abstraction on metric graphs.

Proposition 2. For a segment abstraction a : S----+ S' and metric graphs G, G'
such that G' = a(G), the labelled transition system (Pose,,S', -v-+e,) simulates
the labelled transition system (Pose, S, -v-te) renamed by a.

Proposition 3. Contraction and abstraction commute, that is, for any metric
graphs G, G', for any segment abstraction a, if G CG' then a(G) C a(G').

2.3 The Metric Configuration Logic

Syntax. Let consider a fixed set of segments S and assume there exists a finite
set ST of segment constructors sT (or segment types), that is, partial functions
sT : IR.m ----+ s1- for some natural m. For example, we can take S'fu

rve
= {line :

IR.2 ----+ s1- , arc: IR.3 ----+ s1- } as the set of constructor curve segments Scurve ·
Let K, Z, X be distinct finite sets of variables denoting respectively reals,

segments and vertices of a metric graph. The syntax of the metric configuration
logic (MCL) is defined in Table 1.

Table 1. MCL Syntax

t ::= a E IR I k E K I t + t I t · t
'lpK ::= t ::; t'

s ::= sT (t1, ... , tm) I z E Z I s · s
'lj;s ::= s = s' I s =;< s' I llsll = t

p ::= x EX I (x, s, t) I (t, s, x)

'!pG ::= x .!!...+ x' I p = p' I p � p' I d(p, p') = t

1> ::= 'lpK I 'lj;s I '!pG
I 1> E3:) 1> I 1> V 1> I ,¢
I :3k. c/>(k) I :3z. c/>(z) I ::Ix. c/>(x)

arithmetic terms
arithmetic constraints

segment terms
segment constraints

position terms
position constraints

atomic formula
non-atomic formula
quantifiers

Semantics. Let G =
(V, S, E) be a metric graph fixed in the context, and

let (J' be an assignment of variables K, Z, X to respectively reals IR., segments
S, vertices V. As usual, we extend (J' for evaluation of arithmetic terms (with
variables from K) into reals. Moreover, we extend (J' for the partial evaluation of
segment terms (with variables from Z) and position terms (with variables from
Z and X) into respectively segments S and positions Pose as defined by the
rules in Table 2.

94 M. Bozga and J. Sifakis

Table 2. Evaluation of MCL terms

T() def T() () def fwd()us t1, ... , trn = S ut1, ... , utrn CT x, s, t = pose ux, us, ut
1 def def b d u s · s = us· us u(t, s, x) = pos

0

w (ux, us, ut)
where posbwd ' pos�wd : V X s X IR � Posa are defined as

posbwd(v, s, a) def (e, a) only if :3! e = (v, s, v') EE, 0 <a< llsll

pos�wd(v, s, a) d;;j (e, llsll - a) only if :3! e = (v', s, v) EE, 0 <a< llsll

We tacitly restrict to terms which evaluate successfully in their respective

domains. The semantics of MCL is defined by the rules in Table 3. Note that a

formula represents a configuration of metric graphs sharing common characteris

tics. Besides the logic connectives with the usual set-theoretic meaning, the coa

lescing operator EB allows building graphs by grouping elementary constituents

characterized by atomic formulas relating positions via segments. Hence, the

formula ¢1 EB ¢2 represents the graph configurations obtained as the union of

configurations satisfying ¢1 and ¢2 respectively. It differs from ¢1 V ¢2 in that

this formula satisfies configurations that satisfy either ¢1 or ¢2 .

u, G Ft :St'
u,G F s = s I

u, G F s � s'
u, c F 11 s II = t
u,G F x � x'
u,G FP = P1

u,G FP� p'
u, G F d(p,p') = t
CT, Q F ¢1 ffi ¢2

u, Q F ¢1 V ¢2
u,G F -,¢
u, G F :3k. ¢
u, G F :3z. ¢
u, G F :3x. ¢

Table 3. MCL Semantics

iff

iff

iff

iff

iff

iff

iff

iff

iff

iff

iff

iff

iff

iff

ut :S ut'
I us = us

us � us'
llusll = ut
E = {(ux, us, ux')}
up = up'

as 1 up "-""G up
dc(up, up') = ut
u, (V, E1) F ¢1 and u, (V, E2) F ¢2
for some E1, E2 such that E1 U E2 = E
u, G F ¢1 or u, G I= ¢2
u, G � cp
u [k f----+ a], G F ¢ for some a E IR
u [z f----+ s], G F ¢ for some s E S
u[x f----+ v], G F ¢ for some v E V

Properties. Table 4 provides a set of theorems giving insight into the character

istic properties of the logic. Theorems (A.i)-(A.v) illustrate important properties

of the EB operator that is associative and commutative but not idempotent. As

explained below, of particular interest for writing specifications are formulas of

the form ~ ¢
def

¢ EB true. These are satisfied by configurations with graphs

that contain a subgraph satisfying ¢. Hence, while the formula x � x' charac

terizes the graphs with two vertices and a single edge labeled by s, the formula

(A.i)
(A.ii)
(A.iii)
(A.iv)
(A.v)

(B.i)
(B.ii)
(B.iii)
(B.iv)

(C.i)
(C.ii)

(D.i)

Specification and Validation of Autonomous Driving Systems 95

Table 4. MCL Theorems

(¢1 E9 ¢2) E9 cp3
¢1 E9 ¢2

¢ E9 false

cpE9cp -t
¢1 E9 (¢2 V cp3)

qJ 1 E9 (¢2 E9 cp3)
¢2 E9 ¢1
false
cp (in general)

(¢1 E9 ¢2) V (¢1 E9 cp3)

~¢
cp ====;> ~cp

~(¢1 V ¢2) ~¢1 V ~¢2
~(¢1 E9 ¢2) ~¢1 E9 ~¢2

X � X
1

I\ (cp1 E9 cp2)
true

(x � x' I\ ¢1) E9 (x � x' I\ ¢2)
(x � x' E9 ,(~x � x')) V ,(~x � x')

d(p,p') = t /\p � p' ====;> t :s; llsll
(D.ii) d(p,p') = t I\ d(p',p") = t' ====;> :3k. d(p,p") = k I\ k :s; t + t'

~x !...+ x' characterizes the set of graphs containing such an edge. Thus ~ is a clo
sure operator which moreover satisfies theorems (B.i)-(B.iv). Finally, theorems
(C.i)-(C.ii) relate the atomic formula x !...+ x' to coalescing and the complement
of their closure. The two last theorems (D.i)-(D.ii) differ from the others in
that they express specific properties of segment and position constraints.

Proposition 4. Position constraints not involving edge constraints of the form
x !...+ x' are insensitive to metric graph contraction and refinement.

Note that stronger preservation results for (even simple fragments of) MCL are
hard to obtain because the domain of vertex variables is a fixed set of vertices.
This makes MCL sensitive to both contraction and refinement. For example, the
formula :3x. :3y. x � y may not hold before and hold after refinement i.e., if a
pair of vertices u, v satisfying the constraint is added by refinement.

We provide below abstraction preservation results for MCL formulas. Any
segment abstraction o: : S ----+ S' can be lifted to segment terms by taking respec-

tively o:(sT(t 1 , ... , tm)) def (o:sT)(t1 , ... , tn), o:(s 1 ·s2) def o:(s 1)-' o:(s2), o:(z) def z.
Moreover, o: can be further lifted to MCL formulas on S. We denote by o:(¢)
the MCL formula on S' obtained by rewriting all the segment terms s occur
ring in ¢ by o:(s). The following proposition relates abstractions on formulas to
abstractions on metric graphs.

Proposition 5. Let ¢ be an existential positive MCL formula. Then G F ¢
implies o:(G) F o:(¢) whenever:

{i) ¢ does not contain distance constraints or
{ii) for any connected edges e1, e2 such that e1 • =• e2 their segments compose,

that is, e1.s · e2.s #- ..l.

96 M. Bozga and J. Sifakis

3 ADS Specification

The results of the previous section provide a basis for the definition of both a
dynamic model for ADS and of logics for the expression of their properties. The
model is a timed transition system with states defined as the distribution of
objects over of a metric graph representing a map. Objects may be mobile such
as vehicles and pedestrians or static such as signaling equipment. The logics are
two extensions of MCL, one for the specification of predicates representing sets
of states and the other for the specification of its behavior.

We introduce first the concept of map and its properties. Then we define
the dynamic model and the associated logics. Finally, we discuss the validation
problem and its possible solutions.

3.1 Map Specification

A weakly connected metric graph G = (V, S, E) can be interpreted as a map
with a set of roads Rand a set of junctions J, defined in the following manner:

- a road r of G is a maximal directed path r = Vo .!!..!...+c vi, v1 !.2.+c v2, ... ,
Vn-l .!!..:!:...+c Vn where all the vertices vi, ... , Vn-l have indegree and outdegree
equal to one. We say that v0 is the entrance and Vn is the exit of r. Let
R = {ri}iEI be the set of roads of G.

- a junction j of G is any maximal weakly connected sub-graph G' of G,
obtained from G by removing from its roads all the vertices (and connecting
edges) except their entrances and exits. Note that for a junction, its set of
vertices of indegree (resp. outdegree) one are exits (resp. entrances) of some
roads. Let J = {je}£EL be the set of junctions of G.

Note that G is the union of the subgraphs representing its roads and junc
tions. For every junction, the strong connectivity of G implies that from any
entrance there exists at least one path leading to an exit. Additionally, we assume
that maps include information about features of roads, junctions that are rele
vant to traffic regulations:

roads and junctions are typed: road types can be highway, built-up area roads,
carriage roads, etc. Junctions types can be roundabouts, crossroads, highway
exit, highway entrance, etc. We use standard notation associating a road or
junction to its type e.g., r : highway, j : roundabout.
roads, junctions and their segments have attributes. We use the dot notation
a.x and a.X to denote respectively the attribute x or the set of attributes X
of a. In particular, we denote by r.en and r.ex respectively the entrance and
the exit of a road r and by j.En and j.Ex the sets of entrances and exits of
a junction j. Similarly, r.lanes is the number of lanes of the road r.

Note that contraction and refinement transform maps into maps. A road may
be refined into a road while a junction may be decomposed into a set of roads

Specification and Validation of Autonomous Driving Systems 97

and junctions. Furthermore, abstraction and concretization transform maps into
maps as they preserve their connectivity.

Given a map with sets of roads and junctions R and J respectively, it is
possible to derive compositionally its bottom-up and top-down specifications.
We show first how we can get formulas (j , (r and �j , �r for the bottom-up and
top-down specifications of j and r, respectively. Let us consider the junctions
illustrated in Fig. 6:

- if ra is a roundabout with n entrances ra.En = { enkhE [l,n] alternating
. h . E { } h . b "fi · · r defwit n exits ra. x =

exk kE [l,n] t en its ottom-up speci cation is ',,ra =

ffin ffin
def Bk def Bk,k+1

'1lk=l (k EEl '17k=l (k,k+l , where (k = exk ----t enk and (k,k+l = enk -----
exk+l· The top-down specification is �ra

def
/\�=l �k I\ /\�=l �k,k+l where

def def
�k = ~(k and �k,k+l = ~(k,k+l·

- if in is an intersection with n entrances in.En = { enkh=l,n and n exits
in.Ex = { exkhE [l,n] then its bottom-up specification is (in def

E9�=l (k

with (k
def

E9JEJk enk � exJ and Jk is the set of indices of the exits
of j.Ex connected to the entrance enk. Hence, the top-down specification is

def n def
�in = f\k=l �k where �k = ~(k.

- the formulas for a merger mg and a fork f k with respectively n entrances
and n exits and unique exit and entrance respectively, can be obtained as a
particular case of an intersection.

- finally, for a road r the specifications are �r
def

~(r with (r def r.en � r.ex.

roundabout intersection

Fig. 6. Junctions and roads

3.2 Mobile MCL and Scenario Description for ADS

ex

s

en

road

Mobile MCL (shorthand M2CL) is an extension of MCL for the specification of
states of dynamic ADS models as distributions of objects over maps. Given a
metric graph G representing a map, the state of an ADS is a tuples

def
(s0) aEO

representing the distribution of a finite set of objects O with their relevant
dynamic attributes on the map G. The set of objects O includes a set of vehicles
C and sets of immobile equipment such as lights, road signs, gates, etc.

98 M. Bozga and J. Sifakis

For a vehicle c, its state Sc
def

(it, pas, sp, wt, Zn, ...) includes respectively its
itinerary (from the set of segments S), its position on the map (from Pose), its
speed (from IR.�o), the waiting time (from IR.�o) which is the time elapsed since
the speed of c became zero, the lane it is traveling (from IR.>o), etc. For a traffic

light lt, its state Szt
def

(pas, cl, ...) includes respectively its position on the map
(from Pose), and its color (with values red and green), etc. For a map G and
an initial state sCto) we define a run as a sequence of consecutive states [s(ti)]i�O
parameterized by an increasing sequence of time points ti E IR.�0, equal to the
sum of the time intervals elapsed for reaching the i-th state.

M2CL is equipped with object variables Y with attributes allowing to express
constraints on object states. Object variables in Y are typed and denote objects
from a finite set 0. Constraints are obtained by extending the syntax of MCL to
include object attribute terms. For example, if y is a "vehicle" variable then y.it
is a segment term, y.pos is a position term, and y.ln, y.sp, y.wt are arithmetic
terms of M2CL. Moreover, M2CL allows for equality y = y' and existential
quantification :::ly of object variables.

The semantics of M2CL formulas is defined on distributions (a-, G, s) where
a- provides an interpretation of variables (including object variables) to their
respective domains, G is a metric graph representing the map, and s is the system
state vector for objects in 0. The evaluation of terms is extended to include
object attributes, that is, for any object variable y with attribute attr we define

a- y.attr
def

Sc,y
(attr). Equality and existential elimination on objects variables

are interpreted with the usual meaning, that is, y = y' holds on (a-, G, s) iff
a-y = a-y' and respectively :::ly. 1/J holds on (a-, G, s) iff 1/J holds on (a-[y 1----+ a], G, s)
for some object o E 0.

From a methodological point of view, we restrict to M2CL formulas that can
be written as boolean combinations of three categories of sub-formulas:

(i) 'l/Jmap
describing map specifications characterizing the static environment

in which a dynamic system evolves,
(ii) 'l/Jdy

n describing relations between distributions of the objects of a dynamic
system,

(iii) 'l/Jadd linking itinerary attributes of objects involved in 1/Jdy
n to position

addresses of maps described by 1/Jmap ·

The following set of primitives used respectively in sub-formulas of the above
categories is needed to express ADS scenarios and specifications:

(i) for x, x' vertex variables, X set of vertex variables, [x right-of x' in X],
[x opposite x' in X] express constraints on the positioning of x, x' with
respect to the map restricted to vertices in X (typically a junction):

(ii)

[
• h f , . X] d!!:.f :::i :::i :::i :::i 0 V I line[a,cp] 11 arc[r,cp+0,-0] 11 x rig t-o x in - :::ia.:::ir.:::ic.o.:::i(o,rr) . x" E X x -------+ x /\x ------+ x

[
. , . X] def ::J ::J

V
line[a,cp] 11 1 line[a,cp+7r] 111

X opposite X in = -::::Ja.-::::Jcp. II "'
E X X --------> X I\ X ---------> X

X ,x

for c, o respectively vehicle, object variables, d arithmetic term,
[c meets(d) a] means that c reaches the position of oat distanced:

[c meets(d) o] def :3z. z � c.it I\ c.pos � o.pos I\ llzll = d

Specification and Validation of Autonomous Driving Systems 99

(iii) a) for c a vehicle variable, X a set of vertex variables, [c go-straight X],
[c turn-right X], [c turn-left X] express constraints on the itinerary of c
within the map restricted to vertices in X (typically, a junction):

def line[a,cp] 1 [c go-straight X] = :la.:l<p. line[a, cp] � c.it I\ V x,x' EX c.pos = x I\ x ---------> x
. def . arc[r,cp,0] [c turn-right X] = :lr.:l<p.:3

(
-,r,O) 0. arc[r, <p, 0] � c.it I\ V x,x' EX c.pos = x I\ x -----+ x'

def . arc[r,cp,0] 1 [c turn-left X] = :lr.:ltp.:l
(
o,rr) 0. arc[r, <p, 0] � c.it I\ V x,x' EX c.pos = x I\ x __ _____, x

b) for o an object variable, X a set of vertex variables, l an optional arith
metic term, [o@X, l] means that the position of o belongs to the map sub
graph restricted to vertices in X and the lane of o is l:
[o@X, l]

def (:3d.:3s. V x,x'EX x � x' I\ a.pas= (x, s, d) Va.pas= x) /\a.Zn= l

Scenario Description for ADS. We define a scene as a triplet (1Pmap, 'l/Jadd,

1Pdyn) of M2CL formulas without universal quantifiers where 'l/Jadd defines the
addresses of the objects involved in 1Pdyn in the map specified by 'l/Jmap· As
for maps, a scene can have a top-down and a bottom-up specification defined
respectively by the formulas, ~'l/Jmap ⇒ 'l/Jadd I\ 'lpdyn and 'l/Jmap I\ 1Padd I\ 'lpdyn·

A scenario is a sequence of scenes sharing a common map context and
intended to describe relevant partial states of an ADS run. There are several
proposals for scenario description languages [2, 8, 13]. Figure 1 presents a sce
nario of two scenes taken from [2]. The initial scene is defined by:

Wrnap = [r: road(x, s, y)] /\ [s.lanes = 2]

Wadd = [ego@r, 1] /\ [c1@r, 1] /\ [c2@r,2]

Wdyn = [ego meets(84) ci] /\ [c2 meets(lO0) ego] I\ [ego.sp = q.sp = 100 /\ c2.sp = 110]

The second scene after the vehicle c2 passes the ego vehicle is:

'1/J'rnap = [r : road(x, s, y)] /\ [s.lanes = 2]
'1/J�dd = [ego@r, 1] /\ [c1@r, 1] /\ [c2@r, 1]
'1/J�yn = [ego meets(20) c2] /\ [c2 meets(64) c1] /\ [ego.sp = c1.sp = 100 /\ c2.sp = 110]

Note that from a semantic point of view, a scene is characterized by minimal
models of M2CL (<7, G, s) that satisfy the formula and where all irrelevant com
ponents of s are omitted. For instance, in the minimal models of the two scenes
only the components of s corresponding to c1, c2 and ego are taken.

3.3 Temporal M2CL and Specification of ADS

Temporal M2CL (shorthand TM2CL) is defined as the linear time temporal
extension of M2CL. The syntax is as follows:

<I> ::=¢ I N <I> I <I> V <I> I <I> I\ <I> I :le. <I> I ---,<J>

where¢ is M2CL formula. We consider moreover the eventually operator ◊<I>
def

true V <I>, and always operator
□

<I>
def -.O-.<I>. The semantics of TM2CL is

defined on triples (<7, G, [sCti)]i�o) containing respectively an assignment <7 of

100 M. Bozga and J. Sifakis

Table 5. Semantics of TM2CL

r7, G, [s<ti)k:::o F c/> iff r7, G, s<to)) F c/>
r7, G, [s<ti)]i:2:0 F NP iff r7, G, [s<ti)]i:=::::i F P

r7, G, [s<ti)]i::::::o F Pi U P2 iff :3k 2:: 0. Vj E [O, k - 1]. r7, G, [s<ti)]i:2:i F Pi

r7, G, [s<ti)]i:2'.0 F Pi/\ P2
r7, G, [s<ti)]i>o F :3o. P
r7, G, [s<ti)]i>o F ,p

and r7, G, [s<ti)]i:2:k F P2
iff r7, G, [s<ti)]i:2'.0 F Pi and r7, G, [s<ti)]i:2'.0 F P2
iff r7[o f----+ u], G, [s<ti)]i>o F P, for some u E 0
iff r7, G, [s<ti)]i>o � P

vehicle variables defined in the TM2CL context, a map G and a run [s (ti)]i:2:0 on
G for a finite set of objects 0. The semantic rules are defined in Table 5.

We use TM2CL for both the specification of system properties and traffic
rules. The difference between the two concepts is not clear-cut although it is
implicit in many works. System properties characterize the desired ADS behavior
in terms of relations between speeds and distances taking into account relevant
dynamic characteristics. These include properties such as keeping safe distance
or keeping acceleration and deceleration rates between some bounds.

Traffic rules are higher-level specifications for enhanced safety and efficiency
that usually depend on the driving context. They deal not only with obligations
such as yielding right of way and traffic control at junctions but also advice
on how to drive sensibly and safely in situations disrupting traffic flow such as
congestion, accidents and works in progress. We provide below a formalization
of system properties and traffic rules showing the expressiveness of our modeling
framework. We formalize a set of traffic rules for an intersection j with all-way
stop provided in [26]. The rules are implications of the form ~ ((j) ⇒ <I>(j)
where ((j) is the MCL formula characterizing j and <I>(j) is a TM2CL formula
describing contraints on the driver behavior. We provide below the constraints
in English and the corresponding TM2CL formulas:

(i) "If a driver arrives at the intersection and no other vehicles are present,
then the driver can proceed":
Ve.Vst. □ [st@j.en] I\ [e@j.en] /\ [,:3e'. e' # e I\ [e'@j]] ⇒ ◊[e@j]

(ii) "If, on approach of the intersection, there are one or more cars already
there, let them proceed, then proceed yourself" :
Ve.Vst. □ [st@j.en]/\[e meets(d) st]/\[d:::; drnin] ⇒ [,[e@j]] U [,:3e' .e' -=/: e/\[e'@jl]

(iii) "If a driver arrives at the same time as another vehicle, the vehicle on the
right has the right-of-way" :
Ve.Ve'. □ [e@j.en] /\ [e'@j.en'] /\ [e.wt = e'.wt] I\ [j. en right-of j.en' in j] ⇒

[e'@j.en'] U [e@j]
(iv) "(a) If two vehicles arrive opposite each other at the same time, and no

vehicles are on the right, then they may proceed at the same time if they
are going straight ahead. (b) If one vehicle is turning and one is going
straight, the right-of-way goes to the car going straight:"

Specification and Validation of Autonomous Driving Systems 101

Ve.Ve'. □ [e@j.en] /\ [e'@j.en'] /\ [e.wt = e'.wt = O] /\ [j.en opposite j.en' in j]/\
-,[::le". [e"@j.en"] /\ [j.en" right-of j.en in j] V [j.en" right-of j.en' in j]]/\
[ego-straight j] /\ [e' go-straight j] ⇒ ◊[e@j] /\ [e'@j]

Ve.Ve'. D [e@j.en] /\ [e'@j.en'] /\ [e.wt = e'.wt = O] /\ [j.en opposite j.en' in j]/\
-,[::le". [e"@j.en"] /\ [j.en" right-of j.en] V [j. en" right-of j.en']]/\

[ego-straight j] /\ ,[e' go-straight j] ⇒ ◊[e@j]

(v) "If two vehicles arrive opposite each other at the same time and one is
turning right and one is turning left, the right-of-way goes to the vehicle
turning right. Since they are both trying to turn into the same road, priority
should be given to the vehicle turning right as they are closest to the lane" :

Ve.Ve'. □ [e@j.en] /\ [e'@j.en'] /\ [e.wt = e'.wt = O] /\ [j.en opposite j.en' in j]/\
[e turn-right j] /\ [c' turn-left j] ⇒ ◊[c@j]

4 ADS Validation

4.1 Classification of Validation Problems

The following categories of validation problems can arise in our framework:

MCL and M2CL Model-Checking: (i) Given a map specification ¢ as a closed
MCL formula and a metric graph G decide if G is a model of¢. The problem
boils down to checking satisfiability of a segment logic (SL) formula obtained
by quantifier elimination of vertex variables and partial evaluation of graph
constraints in ¢ according to G. We present later in this section a decision
procedure for SL. (ii) Similarly, given a distribution specification ¢ as a closed
M2CL formula, a map G and a state s for a finite set of objects O, decide if
(G, s) is a model of¢. Again, the problem boils down to checking satisfiability
of a SL formula obtained by quantifier elimination of vertex and object variables
an and partial evaluation of attribute terms.

TM2CL Runtime Verification: Given a temporal specification if> as a TM2CL
formula, a map G and a run [s(ti)] i2:'.:0 of an ADS, check if G, [s(ti)] i2:'.:0 is a model of
if>. This problem boils down to evaluating the semantics of if> on the run. In [10] we
consider a similar runtime verification problem for temporal configuration logic
and runs of dynamic reconfigurable systems. We have shown that the evaluation
of linear-time temporal operators and the model-checking of state/configuration
specifications can be dealt separately. The same idea can be applied here: on one
hand, the temporal formulas can be handled by LamaConv [17] to generate FSM
monitors and on the other hand, the model-checking of distribution specifications
can be handled by a SMT solver (such as Z3) by using an encoding into a
decidable theory.

MCL and M2CL Satisfiability Checking: (i) Given a map specification ¢ as
a closed MCL formula decide if¢ is satisfiable, that is, it has at least one model.

102 M. Bozga and J. Sifakis

We then show in this section that the problem can be effectively solved for a sig
nificant fragment of MCL including a restricted form of bottom-up map specifi
cations. Notice that entailment checking, that is, deciding validity of Vx. ¢1 ⇒ ¢2

for map specifications ¢1, ¢2 where fv(¢1) = fv(¢2) = x, boils down to checking
satisfiability of :3x. ¢1 /\ -.¢2, and can be solved under the same restrictions. (ii)
Similarly, given a distribution specification ¢ as a closed M2CL formula decide if
¢ is satisfiable, that is, it has at least one model. The problem can be reduced to
the satisfiability checking of MCL specifications whenever ¢ is of the restricted
form :3y1 ... :3yk. ¢' where Y1, ... Yk are the only object variables occurring in
¢'. In this case, every object variable y can be substituted by a finite number
of MCL variables Yattr encoding its identity and attributes. As example, for a
vehicle variable y consider an identity (real) variable Yid, a segment variable Yit ,
a position variable Y

pos , real variables Yln , Ysp
, Ywt , etc. After replacement, we

obtain an equisatisfiable MCL formula by enforcing the additional constraints
that state attributes are consistently assigned (e.g., (Yid = y�

d
) ⇒ Yit = Y�

t
)

for all pairs y, y' of vehicle variables among Y1, ... , Yk· Finally, notice also that
entailment checking between distributed specifications can be solved as well, by
reduction to satisfiability checking as explained above.

4.2 Satisfiability Checking
Satisfiability Checking of MCL. The satisfiability checking for MCL formula
is undecidable in general. Actually, the combined use of edge constraints x � x',
equalities on vertex positions x = x', boolean operators and quantifiers leads to
undecidability, as it allows the embedding of first order logic on directed graphs.

Nevertheless, for a significant class of MCL formulas, their satisfiability check
ing can be reduced to satisfiability checking of segment logic (SL), that is, the
fragment of MCL without vertex variables, which is a first order logic combining
only arithmetic and segment constraints.

A complete metric graph specification 'ljJ* is a MCL formula of the form:
(/\1:::;i<j:=:;n Xi -/- Xj) /\ (Vy. vi= l Y = Xi) I\

(EB�= l EB7=1 EB:c!j

l Xi � Xj) /\ (/\i= l /\j= l /\1:::;h<h':=:;mij Sijh -/- Sijh')

that is, where the set of free vertex variables is x = { x1, , Xn}. Note that
a complete metric specification characterizes a metric graph with precisely n
vertices (in correspondence with vertex variables x1, . . . , Xn) and, with precisely
mij distinct edges (that is, defined by the constraints Xi� Xj for h = 1, miJ),
for every pair of vertices Xi, x J.
Theorem 1. Let 7/J* be a complete metric graph specification with free variables
x l±J z l±J k. For any MCL formula ¢ with f v(¢) � x l±J z l±J k holds

1. the closed MCL formula :3x. :3z. :3k. 7/J* I\ ¢ is satisfiable iff
2. the closed SL formula :3z. :3k. (/\i= l /\J= l /\1:::;h<h':::;mij Sijh -/- Sijh') /\

(/\i= l /\J= l /\;!;;1 llsijh II > 0) /\ tr(n, E*, µ*, ¢) is satisfiable, where n =
card x, E* = ui= l uj= l {(i, Sijh, j)}h=l,mij' µ* = { Xi I----+ i}i= l,n and the
translation tr(n, E, µ, ¢) is defined in Table 6.

Specification and Validation of Autonomous Driving Systems 103

Table 6. Translation rules for Theorem 1. (complete definition in [6])

def
tr(n,E,µ,'1/;K) = 'l/JK

def
tr(n,E,µ,'1/;s) = '1/;s

(s
)

def
{

S = Sijh if E = {(i, Sijh,j)}, µx = i, µy = j
tr n, E, µ, x ---+ y =

false otherwise

(')
def (') tr n, E, µ,p = p = eq-pos n, E, µ,p,p

tr(n, E, µ,p � p')
def

acyclic-path(n, E, µ,p, s,p')
def

tr(n, E, µ, c/>1 EB ch) = V EiuE
2

=E tr(n, E1, µ, ¢1) /\ tr(n, E2, µ, ¢2)

tr(n, E, µ, c/>1 V ch)
def

tr(n, E, µ, c/>1) V tr(n, E, µ, c/>2)

tr(n, E, µ, -.cp)
def

-.tr(n, E, µ, cp)

tr(n,E,µ,3k. cp)
def

3k. tr(n,E,µ,cp)
def

tr(n,E,µ,3z. cp) = 3z. tr(n,E,µ,cp)

tr(n, E, µ, 3x. cp)
def

v�=l tr(n, E, µ[x rt i], cp)

Proof. (1 ⇒ 2) If the formula 7/J* I\¢ is satisfiable, then it has a metric graph
model isomorphic to the (unique up to edge labeling) metric graph G'I/J* specified
by 7/J*. The translated formula tr(n, E*, µ*, ¢) represents the evaluation of the
semantics of ¢ on the metric graph G'I/J* according to the rules defined in Table 3.
It must be therefore satisfiable as well, as initially '!/J* I\ ¢ is satisfiable. (2 ⇒ 1)
If the conjunction of the translated formula tr(n, E*, µ*, ¢) and the additional
constraints has a model, ones can use it to build a metric graph, isomorphic to
G'I/J*, satisfying both 'I/J* and ¢. In particular the additional constraints ensure
that the metric graph is well formed, that is, all edges are labeled by non-zero
length segments, and there are no replicated edges between any pairs of vertices.

Satisfiability Checking of SL. If segments S are restricted to particular inter
pretations, the satisfiability checking of formula of SL can be further reduced to
satisfiability checking of formulas of extended arithmetic on reals.

Theorem 2. If segments S are defined as intervals

1. the closed SL formula ¢ is satisfiable iff
2. the closed real arithmetic formula tr1 (¢) is satisfiable, where the translation

tr1 (¢) is defined in Table 1.

Proof. With interval interpretation, segments are precisely determined by their
length and all segment operations and constraints boil down to operations and
constraints on reals. Moreover, we remark that the transformation does not
require multiplication4 on real terms, henceforth, the translated formula tr 1 (¢)
belongs to linear arithmetic iff all arithmetic constraints 7PK within¢ were linear.

4 Except if needed for encoding the length of segment types.

104 M. Bozga and J. Sifakis

Table 7. Translation rules for Theorem 2

tr1(llsT(t1, ... , tm) II)
def len-sT(t1, ... , tm)

tr1 (llzll)
def kz

tr1(lls · s'II)
def tr1(llsll) + tr1(lls'II))

5 Discussion

tr1(s = s') d;) tr1(llsll) = tr1(lls'II)
tr1(s � s') d;) tr1(llsll):::; tr1(lls'II)

def tr1 (11s11 = t) = tr1 (11s11) = t

The proposed framework relies on a minimal set of semantically integrated con
cepts. It is expressive and modular as it introduces progressively the basic con
cepts and carefully separates concerns. It supports a well-defined specification
and validation methodology without semantic gaps as discussed in [6]. Using
configuration logic allows the specification of behavioral properties taking into
account map contexts. This is a main difference from approaches relying on
temporal logics that cannot account for map configurations and where formulas
characterize sets of runs in some implicit map environment, usually a simple
multi-lane setting. Configuration logic specifies scenes as conjunctions of formu
las describing map configurations and vehicle distributions linked by an address
ing relation. It enables enhanced expressiveness by combining static and dynamic
aspects while retaining the possibility to consider them separately. It considers
maps as the central concept of the semantic model and emphasizes the needs
for multilevel representation depending on the type of goals to be met includ
ing long-term mission goals, mid-term maneuver goals and short-term safety
and trajectory tracking goals. Among the three abstraction levels, curve seg
ment models play a central role. Interval segment models can account for simple
properties depending only on relative distances between the involved mobiles.
For properties depending on topological and geometric relations, curve segment
models are needed. The expression of such properties involves primitives such as
go-straight, turn-right, turn-left, right-of and opposite. Region segment models
are needed for low level properties taking into account the dimensions of the
objects and their movement in the 2D space.

The paper is the culmination of work developed over the past three years both
on foundations of autonomous systems [15, 25] and on modelling and validation of
reconfigurable dynamic systems using the DR-BIP component framework [4, 10].
We plan to extend this work in two directions. The first is to leverage on the
DR-BIP execution semantics and formalize ADS dynamics as the composition
of object behavior acting on maps. The second is to extend our work on runtime
verification of dynamic reconfigurable systems [10] by developing adaptive vali
dation techniques driven by adequate model coverage criteria. These techniques
should provide model-based evidence that a good deal of the many and diverse
driving situations are covered (e.g. different types of roads, of junctions, of traffic
conditions, etc.). Finally, we will investigate diagnostics generation techniques
linking failures to their causes emerging from risk factors such as violations of
traffic regulations and unpredictable events.

References

Specification and Validation of Autonomous Driving Systems 105

1. ASAM OpenDRIVE@ - open dynamic road information for vehicle environ
ment. Technical report, V 1.6.0, ASAM e.V., Mar 2020. https://www.asam.net/
standards/ detail/ opendri ve

2. ASAM OpenScenario@ - dynamic content in driving simulation, UML modeling
rules. Technical report, V 1.0.0, ASAM e.V., Mar 2020. https://www.asam.net/
standards/ detail/ openscenario

3. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the devel
opment of automated vehicles. In: Intelligent Vehicles Symposium, pp. 1813-1820.
IEEE (2018)

4. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming
dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Mar
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 304-320. Springer,
Cham (2018). https://doi.org/10.1007 /978-3-030-03424-5_20

5. Beetz, J., Borrmann, A.: Benefits and limitations of linked data approaches for
road modeling and data exchange. In: Smith, I., Domer, B. (eds.) EG-ICE 2018.
LNCS, vol. 10864, pp. 245-261. Springer, Cham (2018). https://doi.org/10.1007 /
978-3-319-91638-5_13

6. Bozga, M., Sifakis, J.: Specification and validation of autonomous driving systems:
a multilevel semantic framework. CoRR abs/2109.06478 (2021). https://arxiv.org/
abs/2109.06478

7. Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver
assistance use cases of highway traffic. In: KEOD, pp. 73-81. SciTePress (2018)

8. Damm, W., Kemper, S., Mohlmann, E., Peikenkamp, T., Rakow, A.: Using traffic
sequence charts for the development of HAVs. In: ERTS 2018, Proceedings (2018)

9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A.M., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of Machine Learning Research, vol. 78,
pp. 1-16. PMLR (2017). CoRL

10. El-Hokayem, A., Bozga, M., Sifakis, J.: A temporal configuration logic for dynamic
reconfigurable systems. In: SAC, pp. 1419-1428. ACM (2021)

11. Esterle, K., Aravantinos, V., Knoll, A.C.: From specifications to behavior: maneu
ver verification in a semantic state space. In: IV, pp. 2140-2147. IEEE (2019)

12. Esterle, K., Gressenbuch, L., Knoll, A.C.: Formalizing traffic rules for machine
interpretability. In: CAYS, pp. 1-7. IEEE (2020)

13. Fremont, D.J., et al.: Scenic: a language for scenario specification and data gener
ation. CoRR abs/2010.06580 (2020). https://arxiv.org/abs/2010.06580

14. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: from
simulation to the real world. In: ITSC, pp. 1-8. IEEE (2020)

15. Harel, D., Marron, A., Sifakis, J.: Autonomics: in search of a foundation for next
generation autonomous systems. Proc. Natl. Acad. Sci. USA 117(30), 17491-17498
(2020)

16. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404-419. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6_28

17. Institute for Software Engineering and Programming Languages, University of
Lubeck: LamaConv - Logics and Automata Converter Library (2020). https://
www.isp.uni-luebeck.de/lamaconv

106 M. Bozga and J. Sifakis

18. Karimi, A., Duggirala, P.S.: Formalizing traffic rules for uncontrolled intersections.
In: ICCPS, pp. 41-50. IEEE (2020)

19. Poggenhans, F., et al.: Lanelet2: a high-definition map framework for the future of
automated driving. In: ITSC, pp. 1672-1679. IEEE (2018)

20. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous
vehicles. In: ITSC, pp. 1658-1665. IEEE (2015)

21. Rizaldi, A., Immler, F., Schiirmann, B., Althoff, M.: A formally verified motion
planner for autonomous vehicles. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 75-90. Springer, Cham (2018). https://doi.org/10.1007 /
978-3-030-01090-4_5

22. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehi
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 50-66. Springer, Cham (2017). https://doi.org/10.1007 /978-3-319-
66845-1-4

23. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driv
ing. CoRR abs/2005.03778 (2020). https://arxiv.org/abs/2005.03778

24. Schonemann, V., et al.: Scenario-based functional safety for automated driving on
the example of valet parking. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC
2018. AISC, vol. 886, pp. 53-64. Springer, Cham (2019). https://doi.org/10.1007 /
978-3-030-03402-3_5

25. Sifakis, J.: Autonomous systems - an architectural characterization. In: Boreale,
M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools
for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 388-410.
Springer, Cham (2019). https:/ /doi.org/10.1007 /978-3-030-21485-2_21

26. Wikipedia. https: //en. wikipedia.org/wiki/ All-way _stop

	Specification and Validationof Autonomous

