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A B S T R A C T

We design and experimentally evaluate a hybrid safe-by-construction longitudinal collision avoidance controller
for autonomous vehicles. The controller combines into a single architecture the respective advantages of a
model predictive controller and a discrete safe controller. The model predictive controller is used to achieve
optimal efficiency in nominal conditions. The safe controller avoids collision by applying two different policies,
for nominal and out-of-nominal conditions, respectively. We present design principles for both controllers and
show how each one can contribute in the hybrid architecture to improve performance, road occupancy and
passenger comfort while preserving safety. The experimental results confirm the feasibility of the approach
and the practical relevance of hybrid controllers for safe and efficient driving.
1. Introduction

It is widely believed that the deployment of autonomous vehicles
can improve not only the traffic efficiency, but also its safety. Longi-
tudinal collision avoidance, as a fundamental safety requirement for
autonomous vehicle control, plays a crucial role in guaranteeing traffic
safety and reducing the number of vehicle crashes, given the fact
that more than 50 percent of the total amount of vehicle crashes are
rear-end collisions.1

A variety of approaches and frameworks has been investigated for
longitudinal collision avoidance control. The underlying assumptions
vary largely with the level of modeling of the vehicle dynamics and
the nature of the controller stimuli. Control-based techniques typically
focus on collision avoidance for adaptive cruise control [1,2] taking
into account the impact of perception uncertainty and accuracy of
vehicle models [3,4]. They allow achieving optimality for specific tasks
or scenarios without providing strict safety guarantees. Model Predic-
tive Control (MPC) [2,5], as a prominent optimal control approach
has been widely used for vehicle control because it allows handling
multiple constraints in a receding horizon. Nonetheless, MPC relies on
the use of optimization algorithms for predicting vehicle states and
depending on the optimization algorithms and the dynamic model of
the vehicles, it may produce no solutions, or result in high computa-
tional complexity because of heavy iterative calculations. Furthermore,
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1 http://www.ntsb.gov/safety/safetystudies/Documents/SIR1501.pdf.

the MPC controller is designed based on certain assumptions about the
vehicle dynamics, and by its nature can hardly guarantee safety, namely
collision avoidance.

A different line of works focus on safety using formal methods.
These apply a variety of techniques including reachability analysis [6,
7], Responsibility Sensitive Safety model [8], logic-based controller
synthesis [9,10], as well as the design of safety supervision mechanisms
for specific scenarios [11,12]. The basic principle of safe longitudinal
collision avoidance control, as formalized and implemented in our
previous work [13], is to keep a safe distance with the preceding
vehicles such that in any case the ego vehicle has enough space to brake
and avoid collisions. Although these results can guarantee correctness
by construction, they lead to solutions that privilege strict safety at the
expense of efficiency. Designing a collision avoidance controller for au-
tonomous vehicles that meets both efficiency and safety requirements
remains a non-trivial problem. The two types of requirements are antag-
onistic as efficiency implies conflicting properties such as performance
(i.e., maximization of the average speed), road occupancy (i.e., keeping
the inter-vehicle distance as small as possible) and comfort (i.e., no
sudden speed changes).

In search of solutions seeking compromises between efficiency and
safety, a few works adopt a hybrid approach combining continuous
and discrete control dynamics. The continuous controller is super-
vised by an automaton that takes over to handle critical situations.
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Fig. 1. The architecture of the Hybrid Controller.

Hybrid approaches rely on a principle of ‘‘division of roles’’ often
applied in systems engineering that distinguishes between nominal
operating conditions and out-of-nominal ones [14]. The continuous
controller has parameters tuned to achieve given goals for nominal
operation while the discrete controller deals with out-of-nominal situa-
tions. For example, [15,16] propose a switch-control approach, where
a MPC Controller is safeguarded by an emergency maneuver acti-
vated to avoid collision when the ego vehicle is in a critical situation.
Nonetheless, the emergency maneuver only takes care of safety without
investigating possible trade-offs between safety and efficiency of the
switch-control policy. Our work also differs from the hybrid control
paradigm, e.g. in [17], which does not address safety, but partitions
the vehicle states into a set of linear modes in order to approximate
the nonlinear vehicle dynamics.

In this work we design and experimentally evaluate a safe-by-
construction Hybrid Controller that proves to be efficient for the three
mentioned criteria. The architecture of the Hybrid Controller is shown
in Fig. 1. It results from the integration into a single architecture of
a nominal MPC Controller and the discrete Safe Controller presented
in [13]. The two controllers running in parallel receive the speed 𝑣𝑒
and 𝑣𝑎 of the ego vehicle and the vehicle ahead respectively, as well as
their distance 𝑑, and compute the target speeds 𝑣𝑚𝑝𝑐 and 𝑣𝑠𝑎𝑓𝑒 respec-
tively. The control policies for computing 𝑣𝑚𝑝𝑐 and 𝑣𝑠𝑎𝑓𝑒 adopt nominal
conditions. In particular, 𝑣𝑠𝑎𝑓𝑒 is a safe speed under the assumption
that the speed of the vehicle ahead is a continuous function and
the deceleration does not exceed some limit corresponding to normal
driving conditions. In addition to 𝑣𝑠𝑎𝑓𝑒, the Safe Controller provides a
speed 𝑣𝑚𝑎𝑥 that is the maximal safe speed for out-of-nominal conditions
when the vehicle ahead suddenly stops, e.g. in case of accident. This
speed is computed as a function of the relative distance between the
ego vehicle and the car ahead with the maximum deceleration rate of
the ego vehicle. The Hybrid Controller uses a Switch selecting between
the three speeds 𝑣𝑚𝑝𝑐 , 𝑣𝑠𝑎𝑓𝑒 and 𝑣𝑚𝑎𝑥 to optimize efficiency criteria
while preventing the speed of the ego vehicle to exceed 𝑣𝑚𝑎𝑥. We show
that the combined use of 𝑣𝑚𝑝𝑐 , 𝑣𝑠𝑎𝑓𝑒 and 𝑣𝑚𝑎𝑥 ensures both efficiency
and safety in nominal conditions and moreover safety is preserved in
out-of-nominal situations.

Our solution is inspired by the Simplex architecture principle [18],
for runtime assurance of safety-critical systems. The architecture uses
a Decision Module that switches control from a high-performance but
unverified (hence potentially unsafe) Advanced Controller to a verified-
safe Baseline Controller if some safety violation is imminent. The idea
of Simplex architecture has been extensively applied in the design
of safe autonomous systems. In [19,20] the authors have shown the
effectiveness of the Simplex architecture for bounding the behavior
of an autonomous aircraft taxiing system in order to maintain the
safety requirements. In [21], Simplex architecture has been applied
to build intelligent and safe unmanned aerial vehicles. In [22], a
language support for Simplex architecture design has been proposed for
programming safe robotic systems. In [23], a similar architecture called
safety cage has been proposed for building safe automotive software.

Nonetheless, in our solution the Safe Controller contributes not only
to out-of-nominal situations but also to some nominal situations where
2

it proves to be more efficient than the MPC Controller. Hence, not
only the Hybrid Controller is safe but also efficiency gains from the
synergistic collaboration are substantial. Of course, the alternation of
roles between the MPC and the Safe Controller should be implemented
so as to avoid sudden changes of the kinematic state of the vehicle. In
particular, care should be taken to avoid jerk (i.e., abrupt changes of
acceleration) that might cause passenger discomfort. Additionally, the
paper proposes a pragmatic methodology for the comparative evalu-
ation of the three controllers for two types of scenarios: (1) nominal
scenarios where the speed of the vehicle ahead is a known continuous
function; and (2) out-of-nominal scenarios where the vehicle ahead
abruptly brakes.

For nominal scenarios, the three controllers are evaluated against
three efficiency criteria.

• The first criterion is performance that measures how much close
the speed of the ego vehicle can get to the speed of the vehicle
ahead. For a period of time it can be defined as the ratio of the
average speed of the ego vehicle with respect to the average speed
of the vehicle ahead. This ratio is less than one if the distance
between the two vehicles is initially zero.

• The second criterion is road occupancy that measures how much
close can get the ego vehicle to the vehicle ahead in collision-free
scenarios.

• The third criterion measures passenger comfort that decreases as
the standard deviation of the acceleration increases.

The paper is organized as follows. Section 2 presents the design
principles for the MPC Controller and the Safe Controller, as well
as a comparative study for the two types of scenarios and the three
efficiency criteria using the Carla simulator. Section 3 presents the
design and the implementation of the Hybrid Controller and its ex-
perimental evaluation. Section 4 emphasizes the feasibility and the
practical relevance of hybrid controllers for safe and efficient driving
and then outlines directions for future work.

2. A comparative study of the two control approaches

2.1. The MPC controller

The MPC paradigm combines three key components. The first is
a dynamic model of the ego vehicle, allowing the MPC Controller to
predict the vehicle states in a given horizon for changing inputs. The
vehicle state is denoted by the vector 𝑥 = [𝑝, 𝑣, 𝑎]𝑇 , where 𝑝 is the
vehicle position, 𝑣 is the speed and 𝑎 is the acceleration. Similarly,
the state of vehicle ahead is 𝑥𝑎 = [𝑝𝑎, 𝑣𝑎, 𝑎𝑎]𝑇 . The relative distance
between the two vehicles is then 𝑑 = 𝑝𝑎−𝑝. We further require that the
longitudinal acceleration is buffered as follows:

̇ = 𝑢 − 𝑎
𝜏

(1)

where the control stimulus 𝑢 is the desired acceleration, and 𝜏 is the
time constant of the actuator lag that captures the inertial characteris-
tics of the vehicle actuator. The vehicle dynamics model is described
by the following equation.

̇ = 𝐴𝜏 ⋅ 𝑥 + 𝐵𝜏 ⋅ 𝑢 (2)

where
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(3)

In order to enhance the stability of the system under the constant
time sampling control method, we discretize the vehicle dynamics
model [24]. If 𝛥𝑡 is the discretization pace, the discrete longitudinal
dynamics model of the ego vehicle at time instant 𝑡𝑘 is given as follows:

𝑥(𝑡 ) = 𝐴 ⋅ 𝑥(𝑡 ) + 𝐵 ⋅ 𝑢(𝑡 ) (4)
𝑘+1 𝑑 𝑘 𝑑 𝑘
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In addition to the state of the ego vehicle, the MPC Controller also
estimates the position of the vehicle ahead in order to compute pre-
dictions. We assume that in each MPC prediction horizon, the vehicle
ahead decelerates with the constant deceleration 𝑎𝑎. Thus, the position
of the vehicle ahead before stopping can be estimated as follows.

𝑝𝑎(𝑡𝑘) = 𝑝𝑎(𝑡0) + 𝑣𝑎(𝑡0) ⋅ (𝑡𝑘 − 𝑡0) + 1∕2 ⋅ 𝑎𝑎 ⋅ (𝑡𝑘 − 𝑡0)2 (6)

The second key component is a cost function, which describes the
expected behavior of the ego vehicle, in order to minimize the relative
distance. Optimization consists in finding the best possible inputs that
minimize the cost function. The cost function for time horizon ℎ is
modeled as a standard quadratic function and the optimization problem
is formulated as follows:

𝑎𝑟𝑔𝑚𝑖𝑛(𝑢∗(⋅),
ℎ
∑

𝑘=1
(𝑥𝑇𝑜𝑝𝑡𝑄𝑥𝑜𝑝𝑡 + 𝑟𝑢2)) (7)

where 𝑄 is the weighting matrix for the state vector and 𝑟 is the weight
for the control stimulus. The new state variable 𝑥𝑜𝑝𝑡 is used to get the
relative distance as close as possible to the constant 𝑑𝑐 and the speed
of the ego vehicle to 𝑣𝑎. It is defined by

𝑥𝑜𝑝𝑡 = 𝑥𝑎 − 𝑥 − [𝑑𝑐 , 0, 0]𝑇 (8)

The weighting matrix is a diagonal matrix 𝑄 = diag [𝑞𝑝, 𝑞𝑣, 𝑞𝑎]𝑇 ,
where 𝑞𝑝, 𝑞𝑣 and 𝑞𝑎 are weighting parameters for vehicle position,
speed and acceleration respectively. By adjusting the values of these
weighting parameters, we can configure preference of the MPC control
tendency. For instance, by enlarging the value of 𝑞𝑝 we force MPC to
drive the ego vehicle closer to the vehicle ahead, so that to reduce
the relative distance. In this work, we make use of a constant distance
𝑑𝑐 to demonstrate the feasibility and safety of our Hybrid Controller.
However, 𝑑𝑐 can also be a velocity dependent distance, e.g., by taking
into account the velocity of the ego vehicle or the vehicle ahead.

Additionally while performing the optimization, the MPC Controller
enforces the following constraints on the minimum or maximum values
of speed and acceleration of the vehicle:
{

𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥

(9)

where 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 (and 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) are user-specified parameters for
control stimulus and speed, respectively.

The third component of the MPC Controller is the optimization
algorithm for solving this linear quadratic programming problem. For
this purpose, we use the open source Python library, cvxopt [25].

Fig. 2 shows the architecture of the MPC Controller. The controller
executes an iterative process optimizing the predictions of vehicle states
while manipulating inputs for a given horizon. The predictions are
based on the specified kinematic model of the vehicle. For each control
cycle at time 𝑡𝑘, the controller takes as input the current states of the
ego vehicle and of the vehicle ahead, and computes the future states
of the ego vehicle to predict the optimal control stimuli 𝑢∗ minimizing
the cost function in the interval [𝑡𝑘, 𝑡𝑘+ℎ], where ℎ is the prediction
horizon. The MPC Controller chooses the first element in the sequence
as the control stimulus for the ego vehicle, and repeats the cycle at time
𝑡𝑘+1. A key advantage of MPC policy is flexibility in achieving complex
objectives and implementing multiple constraints when performing
optimizations.
3

Fig. 2. Architecture of the MPC controller.

2.2. The safe controller

We leverage on a recent work [13] for the Safe Controller, where
we have proposed a correct-by-design safe and efficient controller for
autonomous vehicles. The controller minimizes the distance between
the ego vehicle and the vehicle ahead while preserving safety for both
nominal and out-of-nominal conditions. For nominal conditions, the
Safe Controller is based on the relative speed 𝑣𝑒 − 𝑣𝑎 between the
ego vehicle and the vehicle ahead. It computes the target speed 𝑣𝑠𝑎𝑓𝑒
for moderate nominal acceleration and deceleration rates to enhance
passenger comfort. For out-of-nominal conditions, the Safe Controller
computes a target speed 𝑣𝑚𝑎𝑥 taking into account only the speed of the
ego vehicle and the needed braking distance. The braking distance is
computed for a maximal deceleration rate that is much larger than the
nominal deceleration to cope with dangerous situations, e.g., sudden
stops of the vehicle ahead caused by accidents. The controller always
keeps the speed 𝑣𝑠𝑎𝑓𝑒 ≤ 𝑣𝑚𝑎𝑥 to make sure that in all circumstances
safety is preserved.

We briefly review the general design principle that we specialize for
nominal and out-of-nominal conditions. The safe control policy relies
on the following three functions.

• The function 𝑑(𝑡) gives the relative distance at time 𝑡 between
the ego vehicle and the vehicle ahead, which is either stopped
or moving in the same direction.

• The braking function 𝐵(𝑣, 𝑣′) gives the distance traveled by the
ego vehicle, when braking from initial speed 𝑣 to target speed 𝑣′.
When the target speed is 𝑣′ = 0 (i.e, the ego vehicle brakes to a
stop), this function is abbreviated as 𝐵(𝑣) for simplicity.

• The accelerating function 𝐴(𝑣, 𝑣′) gives the distance traveled by
the ego vehicle, when accelerating from initial speed 𝑣 to target
speed 𝑣′.

We make no specific assumptions about the implementation of
the accelerating and braking functions, e.g., whether acceleration is
constant or variable. We simply require that the following properties
hold:

• 𝐵(𝑣, 𝑣′) = 0 and 𝐴(𝑣, 𝑣′) = 0 if and only if 𝑣 = 𝑣′.
• Additivity property: 𝐵(𝑣, 𝑣1) + 𝐵(𝑣1, 𝑣2) = 𝐵(𝑣, 𝑣2) and 𝐴(𝑣, 𝑣1) +
𝐴(𝑣1, 𝑣2) = 𝐴(𝑣, 𝑣2).

• Strict monotonicity: 𝐵(𝑣, 𝑣1) < 𝐵(𝑣, 𝑣2) and 𝐴(𝑣, 𝑣1) < 𝐴(𝑣, 𝑣2) if
𝑣1 < 𝑣2.

The basic idea for avoiding collision is to moderate the speed of
the vehicle and anticipate the changes of the relative distance so as
to have enough space and time to adjust and brake. For any time 𝑡,
the vehicle only needs to keep track of the distance 𝑑(𝑡) and check in
real-time whether 𝑑(𝑡) is greater than the minimal safe braking distance
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𝐵(𝑣𝑡) for the current speed 𝑣𝑡. It starts braking as soon as 𝑑(𝑡) reaches
the minimal safe braking distance. In this way, it is guaranteed that if
the obstacles ahead do not move in the opposite direction, no collision
would happen. The Theorem below formalizes this idea.

Theorem 1. If at time 𝑡 the speed 𝑣𝑡 of the vehicle is safe with respect to
𝑑(𝑡), i.e., 𝐵(𝑣𝑡) ≤ 𝑑(𝑡) and for any time 𝑡+ ▵ 𝑡 it is possible to set the speed
to a value 𝑣𝑡+▵𝑡 such that the condition 𝑑(𝑡) − 𝑑(𝑡+ ▵ 𝑡) ≤ 𝐵(𝑣𝑡) − 𝐵(𝑣𝑡+▵𝑡)
holds, then the vehicle is always safe.

Proof. The condition 𝑑(𝑡) − 𝑑(𝑡+ ▵ 𝑡) ≤ 𝐵(𝑣𝑡) −𝐵(𝑣𝑡+▵𝑡) relates changes
of 𝑑(𝑡) to the changes of speed 𝑣. It simply says that the free space
ahead does not change faster than the distance that the vehicle travels
in some interval ▵ 𝑡. It can be deduced from the safety assumption
0 ≤ 𝑑(𝑡) − 𝐵(𝑣𝑡) and from the condition that 0 ≤ 𝑑(𝑡) − 𝐵(𝑣𝑡) ≤ 𝑑(𝑡+ ▵
𝑡) − 𝐵(𝑣𝑡+▵𝑡).

Notice as an application of the above theorem, that if the vehicle
brakes from speed 𝑉𝑡 and the obstacles ahead do not move in the
opposite direction, then the condition 𝑑(𝑡) − 𝑑(𝑡+ ▵ 𝑡) ≤ 𝐵(𝑣𝑡) −𝐵(𝑣𝑡+▵𝑡)
trivially holds. In fact, when the vehicle brakes from 𝑣𝑡 for time ▵ 𝑡, it
will reach the speed 𝑣𝑡+▵𝑡 < 𝑣𝑡 and it will have traveled the distance
𝐵(𝑣𝑡, 𝑣𝑡+▵𝑡) = 𝐵(𝑣𝑡) −𝐵(𝑣𝑡+▵𝑡), by application of the additivity property.
Then we have that 𝑑(𝑡) − (𝐵(𝑣𝑡) −𝐵(𝑣𝑡+▵𝑡)) is the distance ahead at time
𝑡+ ▵ 𝑡 for the controlled vehicle. By the assumption that the obstacles
are moving forward or stopped, we have that 𝑑(𝑡) − (𝐵(𝑣𝑡) −𝐵(𝑣𝑡+▵𝑡)) ≤
𝑑(𝑡+ ▵ 𝑡). Thus, Theorem 1 can trivially be applied if obstacles ahead
do not move in the opposite direction.

This theorem suggests a simple and safe control policy that ensures
collision freedom. For any time 𝑡, the vehicle only needs to keep track
of the free distance ahead 𝑑(𝑡) and check in real-time whether 𝑑(𝑡) is
greater than the minimal safe braking distance 𝐵(𝑣𝑡) for the current
speed 𝑣𝑡. It starts braking as soon as 𝑑(𝑡) reaches the minimal safe
braking distance. In this way, it is guaranteed that if the obstacles ahead
do not move in the opposite direction, no collision would happen.

The above result provides a basis for ensuring collision freedom.
Nonetheless, it leaves open the question of how the vehicle can effi-
ciently use the available distance ahead by minimizing the traveling
time. What would be an efficient driving policy when the free headway
distance is greater than the minimal safe braking distance? We consider
that a policy defines the speed function 𝑣(𝑡) in response to a free
distance 𝑑(𝑡). An Accelerating/Braking policy (A/B policy) is a policy
of accelerating first to some speed and then braking. Similarly, an
Braking/Accelerating policy (B/A policy) is the policy of braking first
to some speed and then accelerating. A Constant speed/Braking policy
(C/B policy) is the policy of moving at constant speed and then braking.
A policy is safe if the relative distance between the controlled vehicle
and the obstacle ahead is positive. It is efficient if exceeding the speed
enforced by the policy at any point would compromise safety.

The problem is to minimize the traveling time for a given distance,
which implies to maximize the average speed. Consider the scenario
where the speed of the vehicle is 𝑣 and there is a stationary obstacle
ahead at distance 𝑑, which is greater than the braking distance 𝐵(𝑣).
The application of an A/B policy consists in computing an appropriate
target speed 𝑣′ such that 𝑣 < 𝑣′ ≤ 𝑣𝐿, accelerating the vehicle to 𝑣′

and then braking to full stop, where 𝑣𝐿 is the speed limit. To ensure
collision freedom, the total traveled distance must be such that 𝐴(𝑣, 𝑣′)+
𝐵(𝑣′) ≤ 𝑑. The maximal target speed is given by the condition 𝑣𝑀 =
max{𝑣′ ∣ 𝑑 ≥ 𝐴(𝑣, 𝑣′) + 𝐵(𝑣′)}. Such a speed exists as both acceleration
and braking functions are monotonically increasing with respect to the
target speed 𝑣′. Notice that either 𝑣𝑀 ≤ 𝑣𝐿 and 𝑑 = 𝐴(𝑣, 𝑣𝑀 ) + 𝐵(𝑣𝑀 )
or 𝑣𝑀 = 𝑣𝐿 and 𝑑 > 𝐴(𝑣, 𝑣𝑀 ) + 𝐵(𝑣𝑀 ).

As an example, for motion at constant acceleration and deceleration
(𝑎 and 𝑏, respectively), we have 𝐴(𝑣, 𝑣′) = 𝑣′ ∗ (𝑣′−𝑣)∕𝑎+(𝑣′−𝑣)2∕2 ∗ 𝑎
and 𝐵(𝑣′) = (𝑣′)2∕2 ∗ 𝑏. Then the safety condition becomes 𝑑 ≥ 𝑣′ ∗

′ ′ 2 ′ 2
4

(𝑣 − 𝑣)∕𝑎 + (𝑣 − 𝑣) ∕2 ∗ 𝑎 + (𝑣 ) ∕2 ∗ 𝑏, from which we can deduce
𝑣′ ≤
√

(2 ∗ 𝑎 ∗ 𝑏 ∗ 𝑑 + 𝑏 ∗ 𝑣2)∕(𝑎 + 𝑏). Thus the maximal target speed
𝑀 =

√

(2 ∗ 𝑎 ∗ 𝑏 ∗ 𝑑 + 𝑏 ∗ 𝑣2)∕(𝑎 + 𝑏). As we require that 𝑣′ ≥ 𝑣, we
ave 𝑑 ≥ 𝑣2∕2 ∗ 𝑏 = 𝐵(𝑣) and thus the maximal target speed always
xists. Let 𝑣𝑑 denote the speed reached by accelerating along distance
(𝑡), i.e., 𝑣2𝑑 − 𝑣2 = 2 ∗ 𝑑(𝑡) ∗ 𝑎, then the formula can be simplified as
𝑀 = 𝑣𝑑 ∗

√

𝑏∕(𝑎 + 𝑏).
The following theorem shows that for the given free distance 𝑑, the

A/B policy is the most efficient and that from the given initial speed
there is a maximal speed that minimizes the travel time of 𝑑.

Theorem 2. If the speed 𝑣 of the vehicle is safe with respect to the free
distance 𝑑, i.e., 𝐵(𝑣) ≤ 𝑑, then the A/B policy is always safe and efficient
for 𝑑.

Proof. The safety proof is given by the arguments following Theo-
rem 1. To prove efficiency, we consider three basic driving policies:
the A/B policy, the B/A policy and the C/B policy. The other possible
policies, such as accelerating, driving at constant speed, accelerating
and then braking, can be obtained as combinations of the three basic
ones. We show that the A/B policy yields the minimal traveling time.

We decompose the free distance ahead 𝑑 into two segments: one
segment of length 𝐷 = 𝑑−𝐵(𝑣) and one segment of length 𝐵(𝑣). Due to
the additivity property, the distance 𝐵(𝑣) is always required regardless
of the applied polices in order to brake safely from speed 𝑣. So the
policies may differ only in the time needed to travel distance 𝐷. In the
A/B policy, the vehicle travels distance 𝐷 by first accelerating to the
maximal target speed 𝑣𝑀 and then braking from 𝑣𝑀 to 𝑣. We denote
by 𝑡𝐴 the time needed to accelerate from 𝑣 to 𝑣𝑀 and by 𝑡𝐵 the time
needed to brake from 𝑣𝑀 to 𝑣. In the C/B policy, the vehicle first
moves at constant speed 𝑣 for the distance 𝐷 and then brakes from
𝑣 for the remaining distance 𝐵(𝑣). We denote by 𝑡𝐷 the time needed
to travel 𝐷 with constant speed 𝑣. We show that 𝑡𝐷 is greater than
𝑡𝐴 + 𝑡𝐵 . We denote the speed function during acceleration by 𝑣′(𝑡) and
the speed function during deceleration by 𝑣′′(𝑡). Then we have 𝑣′(𝑡) > 𝑣
for 𝑡𝐴 > 𝑡 > 0 and 𝑣′′(𝑡) > 𝑣 for 𝑡𝐵 > 𝑡 > 0. Since 𝐷 = 𝑣 ∗ 𝑡𝐷 =
∫ 𝑡𝐴
0 𝑣′(𝑡)𝑑𝑡 + ∫ 𝑡𝐵

0 𝑣′′(𝑡)𝑑𝑡 > ∫ 𝑡𝐴
0 𝑣𝑑𝑡 + ∫ 𝑡𝐵

0 𝑣𝑑𝑡 = 𝑣 ∗ (𝑡𝐴 + 𝑡𝐵), we have
𝑡𝐷 > 𝑡𝐴+ 𝑡𝐵 . Thus the A/B policy takes less time and it is more efficient
han the C/B policy.

In the B/A policy, the vehicle first brakes and accelerates for the
istance 𝐷 and then brakes for the remaining distance 𝐵(𝑣). We denote
y 𝑡′𝐵 + 𝑡′𝐴 the traveling time of 𝐷 by braking and accelerating. By
pplying a similar reasoning, we can show that 𝑡′𝐵 + 𝑡𝐴 > 𝑡𝐷. Thus the
/B policy is more efficient than the B/A policy. This concludes the
roof.

Based on the above results, we study a control principle for collision
voidance. We consider that the vehicle speed can change between a
inite set of increasing levels 𝑣0, 𝑣1,… , 𝑣𝑛, where 𝑛 is a constant, 𝑣0 = 0
nd 𝑣𝑛 is the limit speed of the vehicle. We apply A/B policy to trigger
he acceleration and braking from one level to another according to
he free distance ahead and the bounds computed as follows, for each
peed level 𝑣𝑖, 𝑖 ∈ [1, 𝑛],

• 𝐵𝑖 = 𝐵(𝑣𝑖) is the minimal safe braking distance needed for the
vehicle to fully stop from speed 𝑣𝑖;

• 𝐷𝑖 = 𝐴(𝑣𝑖−1, 𝑣𝑖)+𝐵(𝑣𝑖) is the minimal safe distance needed for the
vehicle to accelerate from speed 𝑣𝑖−1 to 𝑣𝑖 and then brake from 𝑣𝑖
to stop.

The highest safe speed level 𝑣 can be specified as a function of the
urrent speed 𝑣𝑡 of the vehicle and the distance 𝑑, provided that their
nitial values 𝑣0 and 𝑑0 satisfy the condition 𝐵(𝑣0) ≤ 𝑑0.

=

⎧

⎪

⎨

⎪

𝑣𝑖+1 when 𝑣𝑡 = 𝑣𝑖 ∧ 𝑑 = 𝐷𝑖+1

𝑣𝑖−1 when 𝑣𝑡 = 𝑣𝑖 ∧ 𝑑 = 𝐵𝑖 (10)
⎩

𝑣𝑖 when 𝑣𝑡 = 𝑣𝑖 ∧𝐷𝑖+1 > 𝑑 > 𝐵𝑖
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Fig. 3. Illustration of the collision avoidance principle for 𝑛 = 4.

Fig. 4. Automaton modeling the collision avoidance principle.

Fig. 3 illustrates the principle for 𝑛 = 4 speed levels. As the value
of 𝑑 increases, the speed of the vehicle climbs up levels. Safety is
preserved by construction. The vehicle can accelerate to a higher level,
if it can safely and efficiently use the available distance by combining
acceleration and deceleration; in particular braking to a lower level if
the distance reaches the bound for safe braking.

Fig. 4 provides a scheme for the computation of the safe speed level
in the form of an extended automaton. The control states correspond to
speed levels 𝑣0,… , 𝑣𝑛. The transitions model instantaneous acceleration
and braking steps triggered by conditions involving the distance 𝑑 and
the pre-computed bounds 𝐵𝑖 and 𝐷𝑖. If the control location is 𝑣𝑖 and the
distance is equal to the minimal safe acceleration distance (i.e., 𝑑 =
𝐷𝑖+1), then the automaton moves to location 𝑣𝑖+1 after the speed is
increased to 𝑣𝑖+1. If the distance reaches the minimal safe braking
distance (i.e., 𝑑 = 𝐵𝑖), then the automaton moves to location 𝑣𝑖−1
after the speed is decreased to 𝑣𝑖−1. Given that 𝐵𝑖 = 𝐵𝑖−1 + 𝐵(𝑣𝑖, 𝑣𝑖−1),
after braking to 𝑣𝑖−1 there is still enough space for safe braking. If
none of the triggering conditions holds, then the distance 𝑑 is such
that 𝐵𝑖 < 𝑑 < 𝐷𝑖+1. The automaton stays at location 𝑣𝑖 and the speed
remains unchanged.

In our context, the speed 𝑣𝑠𝑎𝑓𝑒 is computed for nominal conditions
considering that 𝑣𝑡 = 𝑣𝑒 - 𝑣𝑎 and that the braking and acceleration func-
tions are defined for moderate rates. For out-of-nominal conditions, the
maximal speed 𝑣𝑚𝑎𝑥 of the ego vehicle is 𝑣𝑚𝑎𝑥 = Max{ 𝑣 ∣ 𝐵𝑚𝑎𝑥(𝑣𝑒) ≤ 𝑑 },
where 𝐵𝑚𝑎𝑥 is the deceleration function for some maximal deceleration
rate. To make sure that collision is avoided in any case, the controller
compares the speeds 𝑣𝑠𝑎𝑓𝑒 and 𝑣𝑚𝑎𝑥. When 𝑣𝑚𝑎𝑥 is reached, a command
is issued for emergency braking.

Compared with the MPC Controller, the Safe Controller can guar-
antee safety and it is more computational efficient since at any time
it chooses the speed minimizing the relative distance depending on
simple criteria. Thus, the Safe Controller can be easily implemented in
real time without additional costs. On the contrary, the MPC Controller
applies more involved computation trying to estimate the future states
of both vehicles according to the kinematic model of the vehicle, which
often requires computationally expensive optimization techniques.

2.3. Evaluation of the two control approaches

2.3.1. Experimental setting and evaluation criteria
We implement the MPC Controller and the Safe Controller in the

Carla (version 0.9.8) simulator [26]. In the experimental evaluations,
we consider constant acceleration/deceleration without considering
5

the road friction conditions. For the Safe Controller, the accelera-
tion/deceleration in the nominal setting is taken 3 m∕s2 and the deceler-
ation rate in the out-of-nominal setting (e.g., a burst accident) is taken
12 m∕s2. The speed levels are from the set {0, 4, 8, 12, 16, 20, 24, 28, 32}
(𝑚∕𝑠). The control policy for the computation of safe speed 𝑣𝑠𝑎𝑓𝑒 is
based on the relative speed 𝑣𝑒 - 𝑣𝑎. For the MPC Controller, the
prediction horizon is set to 10 steps. The constant 𝑑𝑐 in Eq. (8) is 20
m. The weighting matrix 𝑄 is set to 𝑑𝑖𝑎𝑔[50, 400, 1]𝑇 . Time lag 𝜏 is 0.3,
and control stimulus weight 𝑟 is set to 1.

To evaluate the efficiency of the two controllers, we carry out a
set of comprehensive experiments performed on a Windows 10 PC
with AMD R5 3500 and NVIDIA GTX 1660 SUPER. We consider both
nominal and out-of-nominal scenarios.

• In a nominal scenario, the speed of the vehicle ahead is described
by the function 𝑣𝑎(𝑡) = 𝐴 sin( 2𝜋𝑇 𝑡) + 𝑣𝑎,0, where 𝑣𝑎,0 is taken
equal to 12 𝑚∕𝑠. In the experiments, we consider three different
values of 𝐴, i.e., {6, 9, 12} 𝑚∕𝑠, and three different values of 𝑇 ,
i.e., {10, 20, 30} 𝑠.

• In an out-of-nominal scenario, the vehicle ahead brakes suddenly
and stops. We assume that the ego vehicle does not know when
the sudden braking may occur.

In all scenarios the ego vehicle and the vehicle ahead move in the
same lane in the same direction. The initial speed of the ego vehicle is
set to 0 𝑚∕𝑠. The initial relative distance between the two vehicles is
set to 10 𝑚.

We check whether the MPC Controller violates safety for nominal
and out-of-nominal scenarios. For nominal scenarios, we evaluate the
efficiency of the two controllers with respect to the following three
criteria defined for simulation time 𝑡𝑠𝑖𝑚.

• Performance is measured as the ratio of average speed of the ego
vehicle with respect to that of the vehicle ahead, i.e.,

𝑝 =
∫ 𝑡𝑠𝑖𝑚
0 𝑣𝑒(𝑡)𝑑𝑡

∫ 𝑡𝑠𝑖𝑚
0 𝑣𝑎(𝑡)𝑑𝑡

(11)

where 𝑣𝑒 is the speed of the ego vehicle and 𝑣𝑎 is the speed of the
vehicle ahead.

• Road occupancy is defined as the ratio of the space occupied by
the vehicles over the total available space. For our case with two
vehicles, we consider 1∕𝑑 as a measure of the occupancy, where 𝑑
is their relative distance. For a simulation in time interval [0, 𝑡𝑠𝑖𝑚],
it is given by the formula:

𝑜 =
1
𝑡𝑠𝑖𝑚 ∫

𝑡𝑠𝑖𝑚

0
1∕𝑑(𝑡)𝑑𝑡 (12)

The higher the value 𝑜, the higher the occupancy. Note that the
measure uses 𝑑, the distance between the two vehicles without
taking into account any safety margin.

• Comfort means that the variations of acceleration are close to its
average value. We consider that it is measured as the reciprocal
of the acceleration variance, i.e.,

𝑐 = ( 1
𝑡𝑠𝑖𝑚 ∫

𝑡𝑠𝑖𝑚

0
(𝑎(𝑡) − �̄�)2𝑑𝑡)−1 (13)

where 𝑎 is the acceleration of the ego vehicle, and �̄� = 1
𝑡𝑠𝑖𝑚

∫ 𝑡𝑠𝑖𝑚
0

𝑎(𝑡)𝑑𝑡. Note that the higher the value 𝑐 , the higher the comfort
level.

2.3.2. Evaluation of the two controllers
Nominal scenarios. Fig. 5 shows the speed of the ego vehicle for

the two controllers and the maximal safe speed 𝑣𝑚𝑎𝑥 for the nominal
scenarios. Note that the MPC Controller closely follows the speed of
the vehicle ahead, in particular when the period of the speed function
increases, e.g.,𝑇 = 30 s. However, the speed of the MPC Controller
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Fig. 5. Speed for the Safe Controller (in green), the MPC Controller (in orange) and the maximal speed 𝑣𝑚𝑎𝑥 (in red) for nominal scenarios. The speed of the vehicle ahead is
shown in blue. Note the unsafe situations where 𝑣𝑚𝑝𝑐 > 𝑣𝑚𝑎𝑥. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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cannot avoid unsafe situations as shown in Fig. 5 when the orange line
(𝑣𝑚𝑝𝑐) crosses the red line (𝑣𝑚𝑎𝑥). On the contrary, the Safe Controller is
less sensitive to speed changes of the vehicle ahead and allows smaller
speed variation due to safety constraints. Despite these constraints, the
performance measured as the average speed has not been sacrificed.
The upmost part of Table 1 provides performance metrics showing
that in most cases, the Safe Controller produces higher average speeds
than the MPC Controller and thus maintains slightly higher ratios.
Nonetheless, the differences increase when the amplitude of the speed
function becomes larger, e.g., A = 12.

Fig. 6 provides the relative distance for the two controllers. It shows
that the amplitude variation for the MPC Controller is much smaller,
especially when the period and the amplitude of the speed function are
larger. This is because the MPC Controller favors speed tracking. On
the contrary, the Safe Controller maintains a smaller relative distance
on average than the MPC Controller, since its control policy focuses
on distance minimization. This observation is confirmed by the higher
occupancy metrics for the Safe Controller provided in Table 1.

The comfort metrics provided by Table 1 show that comfort for the
Safe Controller is much higher than for the MPC Controller when the
period and the amplitude of the speed function are small. The reason
is that the Safe Controller is less sensitive to the speed changes of
the vehicle ahead and avoids alternating changes of acceleration and
deceleration. Nonetheless, for larger periods, e.g. 𝑇 = 30, the Safe
Controller is less comfortable.

Out-of-nominal scenarios. Fig. 7 and Fig. 8 show the speed and
he relative distance for the emergency scenarios, respectively. Note
hat both controllers react to a sudden brake of the vehicle ahead.
he Safe Controller always maintains a safe distance between the two
ehicles, thus avoiding collision. On the contrary, the MPC Controller
s unsafe in two out of nine cases, in particular, when the period of the
peed function becomes large. For instance, in Fig. 8 we can see that
collision occurs after 40 s when 𝑇 = 30 s and A = 12 m/s (the blue

ashed line marks the beginning of the braking).

. Hybrid collision avoidance control

.1. Design and implementation of the hybrid controller

The above comparative evaluation confirms that in most cases the
PC Controller is slightly better in terms of performance and occu-

ancy, while it fails to be safe for out-of-nominal scenarios when the
6

t

Table 1
Efficiency metrics for the Safe Controller and the MPC Controller for nominal scenarios
when the initial relative distance is 10 m.

Performance A = 6 A = 9 A = 12

MPC Safe MPC Safe MPC Safe

T = 10 0.946 0.963 0.945 0.965 0.943 0.974
T = 20 0.945 0.965 0.937 0.968 0.936 0.971
T = 30 0.948 0.954 0.942 0.963 0.934 0.963

Occupancy A = 6 A = 9 A = 12

MPC Safe MPC Safe MPC Safe

T = 10 0.022 0.025 0.019 0.024 0.017 0.026
T = 20 0.023 0.025 0.02 0.027 0.018 0.03
T = 30 0.025 0.026 0.022 0.029 0.019 0.034

Comfort A = 6 A = 9 A = 12

MPC Safe MPC Safe MPC Safe

T = 10 0.182 0.587 0.141 0.423 0.133 0.168
T = 20 0.437 0.652 0.234 0.284 0.155 0.19
T = 30 0.698 0.411 0.411 0.415 0.267 0.252

vehicle ahead abruptly stops. As expected the Safe Controller preserves
safety in all scenarios and assures more comfortable driving.

We have explained the design principle of the Hybrid Controller
in the Introduction (Fig. 1). It consists of the Safe Controller and the
MPC Controller running in parallel and a Switch deciding which one of
the control stimuli takes effect. The Switch produces the target speed
of the ego vehicle taking care that it never exceeds the maximal safe
speed 𝑣𝑚𝑎𝑥 computed as a function of the distance 𝑑 and the maximal
deceleration of the ego vehicle. For deceleration 𝑎𝑚𝑎𝑥, we have 𝑣𝑚𝑎𝑥 =
(2 ⋅ 𝑎𝑚𝑎𝑥 ⋅ 𝑑)1∕2.

In the Hybrid Controller under the constraint 𝑣 ≤ 𝑣𝑚𝑎𝑥, the Switch
elects the highest speed between 𝑣𝑚𝑝𝑐 and 𝑣𝑠𝑎𝑓𝑒 so as to achieve the
est performance. Hence, it continuously applies the following rules to
elect the target speed 𝑣 of the Hybrid Controller:
if 𝑣𝑠𝑎𝑓𝑒 ≤ 𝑣𝑚𝑝𝑐 ≤ 𝑣𝑚𝑎𝑥 then 𝑣 ∶= 𝑣𝑚𝑝𝑐
else if 𝑣𝑚𝑝𝑐 ≤ 𝑣𝑠𝑎𝑓𝑒 then 𝑣 ∶= 𝑣𝑠𝑎𝑓𝑒
else if 𝑣𝑚𝑎𝑥 ≤ 𝑣𝑚𝑝𝑐 then 𝑣 ∶= 𝑣𝑚𝑎𝑥
Notice that in all cases the rules prevent the target speed 𝑣 from

xceeding 𝑣𝑚𝑎𝑥. In nominal conditions it can happen that 𝑣𝑚𝑝𝑐 ≤ 𝑣𝑠𝑎𝑓𝑒.
his is the case when the distance 𝑑 is large enough and the speed of
he vehicle ahead is decreasing. The speed 𝑣 can exceed 𝑣 as the
𝑠𝑎𝑓𝑒 𝑚𝑝𝑐
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Fig. 6. Relative distance for the Safe Controller (in green) and the MPC Controller (in orange) for nominal scenarios. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 7. Speed for the Safe Controller (in green), the MPC Controller (in orange) and the maximal speed 𝑣𝑚𝑎𝑥 (in red) in out-of-nominal scenarios when the vehicle ahead suddenly
brakes. The speed of the vehicle ahead is shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Safe Controller focuses on minimizing the relative distance while the
MPC Controller tracks the speed of the vehicle ahead.

An important difference from similar works dealing with hybrid
controllers [15,16] is that our Safe Controller contributes not only to
safety but also to a large extent to performance and comfort and even
in some cases to improve occupancy. This observation is confirmed
by experimental results provided in the next section. Notice that this
hybrid control principle can be applied by replacing in our architecture
the MPC Controller by other learning-based controllers [27].

3.2. Evaluation of the hybrid controller

We consider both nominal and out-of-nominal scenarios as before
and adopt the same experimental settings. For nominal scenarios, we
compare the efficiency of the three controllers. Furthermore, for out-of-
nominal scenarios we consider additional braking rates of the vehicle
ahead.

Nominal scenarios. Fig. 9 depicts the speed of the ego vehicle for
the three controllers in nominal scenarios. It shows that the Hybrid
7

b

Controller can also track the speed of the vehicle ahead closely, taking
the best from the two controllers. Notice that the purple line can be
above the orange line, for instance during simulation time around
20 s when 𝑇 = 30 and A = 9. The upmost part of Table 2 provides
esults comparing the performance of the three controllers. Note that
he Hybrid Controller outperforms the two other controllers.

Fig. 10 depicts the relative distance for the three controllers. As
xpected the distance maintained by the Hybrid Controller is in general
maller taking advantage of the strength of the Safe Controller for
inimizing the relative distance. This is also shown in the middle part

f Table 2, which compares the occupancy for the three controllers.
he Hybrid Controller achieves higher occupancy than the other two
ontrollers.

The comfort metrics provided in the bottom part of Table 2, show
hat when the period and the amplitude of the speed function are small,
he Safe Controller produces the most comfortable driving policies.

hile when they become larger, the Hybrid Controller is better than
he Safe Controller and is slightly outperformed by the MPC Controller.

Table 3 shows time percentages corresponding to the application
y the Hybrid Controller of the MPC policy, the nominal safe policy
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Fig. 8. Relative distance for the Safe Controller (in green) and the MPC Controller (in orange) when the vehicle ahead suddenly brakes at the moment indicated by the dashed
blue line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Speed for the Hybrid Controller (in purple), the MPC Controller (in orange), the Safe Controller (in green) when the speed of the vehicle ahead is a sinusoidal function
(in blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and the out-of-nominal safe policy. We can see that the MPC Controller
contributes more than the other two, while the contribution of the Safe
Controller is non-negligible. The maximal safe speed 𝑣𝑚𝑎𝑥 is applied to
a very small percentage of cases to ensure safety.

Out-of-nominal scenarios. Figs. 11 and 12 provide results for the
three controllers in the out-of-nominal scenarios where the vehicle
ahead suddenly brakes with rate 12 m∕s2. Note that the MPC Controller
becomes unsafe for increasing amplitude and period of the speed of
the vehicle ahead. There are two out of nine settings where the MPC
control policy results in collision. In Appendix, additional experiments
for braking rates 4 m∕s2 and 8 m∕s2 are provided. They show that the
MPC Controller is safe for all scenarios with braking rate 4 m∕s2 while it
s fails to be safe in one out of nine scenarios with braking rate 8 m∕s2.

. Conclusion and discussion

We propose a method for building a hybrid safe-by-construction and
fficient collision avoidance controller. The controller integrates a MPC
8

ontroller, a discrete Safe Controller and a Switch that combines the
outputs of the two controllers to generate stimuli that are safe and
efficient. We show experimentally that the Hybrid Controller besides
guaranteeing safety, ensures high efficiency because it ‘‘takes the best’’
from each one of the integrated controllers. The MPC Controller seeks
policies that reduce both the relative speed and the relative distance
while in nominal scenarios the Safe Controller seeks minimization of
the relative distance. We show that this hybrid control policy ensures
a very good efficiency measured by three criteria: performance, road
occupancy and comfort.

We adopt a pragmatic and progressive methodology based on the
comparative evaluation of the two constituent controllers for both
nominal and out-of-nominal scenarios. The evaluation provides a good
insight on the merits of the respective control principles which mo-
tivates the design of the Hybrid Controller. The experimental results
confirm the feasibility and the practical relevance of hybrid controllers

for safe and efficient driving.
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Fig. 10. Relative distance for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the speed of the vehicle ahead is a
sinusoidal function. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Speed of the ego vehicle for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with
rate 12 m∕s2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Efficiency metrics for the Hybrid Controller, the Safe Controller and the MPC Controller for nominal scenarios.

Performance A = 6 A = 9 A = 12

MPC Safe Hybrid MPC Safe Hybrid MPC Safe Hybrid

T = 10 0.946 0.963 0.978 0.945 0.965 0.981 0.943 0.974 0.983
T = 20 0.945 0.965 0.965 0.937 0.968 0.982 0.936 0.971 0.99
T = 30 0.948 0.954 0.964 0.942 0.963 0.988 0.934 0.963 0.972

Occupancy A = 6 A = 9 A = 12

MPC Safe Hybrid MPC Safe Hybrid MPC Safe Hybrid

T = 10 0.022 0.025 0.05 0.019 0.024 0.047 0.017 0.026 0.038
T = 20 0.023 0.025 0.034 0.02 0.027 0.061 0.018 0.03 0.069
T = 30 0.025 0.026 0.033 0.022 0.029 0.065 0.019 0.034 0.043

Comfort A = 6 A = 9 A = 12

MPC Safe Hybrid MPC Safe Hybrid MPC Safe Hybrid

T = 10 0.182 0.587 0.177 0.141 0.423 0.123 0.133 0.168 0.134
T = 20 0.437 0.652 0.429 0.234 0.284 0.214 0.155 0.19 0.142
T = 30 0.698 0.411 0.632 0.411 0.415 0.357 0.267 0.252 0.258
9
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(

Fig. 12. Relative distance for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with rate 12 m∕s2.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Percentage of time in use for the Safe Controller, the MPC Controller and the maximal safe speed 𝑣𝑚𝑎𝑥 for nominal scenarios.
Percentage of time (%) A = 6 A = 9 A = 12

MPC Safe MAX MPC Safe MAX MPC Safe MAX

T = 10 69.567 29.367 1.067 84.467 15.533 0 87.8 12.2 0
T = 20 63.267 35.667 1.067 59.567 38.3 2.133 69.367 28 2.633
T = 30 68.067 31.933 0 49.267 48.6 2.133 71.033 28.967 0
Fig. 13. Speed of the ego vehicle for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with
rate 4 m∕s2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
A key and original lesson from our results is that the Safe Controller
is not simply a monitor that takes over in critical situations. It also
significantly contributes to efficiency applying a control policy that
nicely complements the MPC policy. The experimental results show
that the interplay between the dynamics of discrete and continuous
controllers pursuing complementary objectives can be surprisingly rich.
Its study may lead to more elaborated and enhanced hybrid policies.
In future work we will investigate our hybrid control principle by
replacing the MPC Controller with other types of adaptive controllers,
e.g., machine-learning-based controllers [27].
10
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Fig. 14. Relative distance for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with rate 4 m∕s2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Speed of the ego vehicle for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with
rate 8 m∕s2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Relative distance for the Hybrid Controller (in purple), the MPC Controller (in orange) and the Safe Controller (in green) when the vehicle ahead brakes with rate 8 m∕s2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Journal of Systems Architecture 125 (2022) 102432Q. Wang et al.
Appendix

See Figs. 13–16.

References

[1] J. Park, D. Kim, Y. Yoon, H. Kim, K. Yi, Obstacle avoidance of autonomous
vehicles based on model predictive control, Proc. Inst. Mech. Eng. D.

[2] D.Q. Mayne, Model predictive control: Recent developments and fu-
ture promise, Automatica 50 (12) (2014) 2967–2986, http://dx.doi.org/10.
1016/j.automatica.2014.10.128, http://www.sciencedirect.com/science/article/
pii/S0005109814005160.

[3] H. Li, Y. Shi, Distributed model predictive control of constrained nonlinear
systems with communication delays, Systems Control Lett. 62 (10) (2013)
819–826, http://dx.doi.org/10.1016/j.sysconle.2013.05.012.

[4] H. Li, Y. Shi, Robust distributed model predictive control of constrained
continuous-time nonlinear systems: A robustness constraint approach, IEEE Trans.
Automat. Control 59 (6) (2014) 1673–1678, http://dx.doi.org/10.1109/TAC.
2013.2294618.

[5] D. Mayne, J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive control:
Stability and optimality, Automatica 36 (6) (2000) 789–814, http://dx.doi.org/
10.1016/S0005-1098(99)00214-9.

[6] S.M. Loos, A. Platzer, L. Nistor, Adaptive cruise control: Hybrid, distributed, and
now formally verified, in: International Symposium on Formal Methods, Springer,
2011.

[7] A. Rizaldi, F. Immler, B. Schürmann, M. Althoff, A formally verified motion
planner for autonomous vehicles, in: Automated Technology for Verification and
Analysis, Springer, 2018.

[8] S. Shalev-Shwartz, S. Shammah, A. Shashua, On a formal model of safe and
scalable self-driving cars, CoRR abs/1708.06374 arXiv:1708.06374.

[9] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A.D. Ames, J.W. Grizzle, N.
Ozay, H. Peng, P. Tabuada, Correct-by-construction adaptive cruise control: Two
approaches, IEEE Trans. Control Syst. Technol. (2015).

[10] S. Sadraddini, S. Sivaranjani, V. Gupta, C. Belta, Provably safe cruise control of
vehicular platoons, IEEE Control Syst. Lett. (2017).

[11] T. Korssen, V. Dolk, J. van de Mortel-Fronczak, M. Reniers, M. Heemels,
Systematic model-based design and implementation of supervisors for advanced
driver assistance systems, IEEE Trans. Intell. Transp. Syst. (2017).

[12] J. Krook, L. Svensson, Y. Li, L. Feng, M. Fabian, Design and formal verification
of a safe stop supervisor for an automated vehicle, in: 2019 International
Conference on Robotics and Automation, 2019.

[13] Q. Wang, D. Li, J. Sifakis, Safe and efficient collision avoidance control for
autonomous vehicles, in: MEMOCODE, 2020.

[14] J.R. Mayo, R.C. Armstrong, G.C. Hulette, M. Salloum, A.M. Smith, Robust digital
computation in the physical world, Cyber-Phys. Syst. Secur. (2018).

[15] M. Althoff, S. Maierhofer, C. Pek, Provably-correct and comfortable adaptive
cruise control, IEEE Trans. Intell. Veh. (2020) 1, http://dx.doi.org/10.1109/TIV.
2020.2991953.

[16] S. Magdici, M. Althoff, Adaptive cruise control with safety guarantees for
autonomous vehicles, Proc World Congr. Int. Fed. Automatic Control (2017)
5774–5781.

[17] D. Jagga, M. Lv, S. Baldi, Hybrid adaptive chassis control for vehicle lateral
stability in the presence of uncertainty, in: 2018 26th Mediterranean Conference
on Control and Automation, MED, 2018, pp. 1–6, http://dx.doi.org/10.1109/
MED.2018.8442921.

[18] L. Sha, Using simplicity to control complexity, IEEE Softw. 18 (4) (2001) 20–28,
http://dx.doi.org/10.1109/MS.2001.936213.

[19] D. Cofer, I. Amundson, R. Sattigeri, A. Passi, S. Rayadurgam, Run-time assurance
for learning-enabled systems, in: NASA Formal Methods, 2020.

[20] D. Cofer, I. Amundson, R. Sattigeri, A. Passi, S. Rayadurgam, Run-time assurance
for learning-based aircraft taxiing, in: 2020 IEEE/AIAA 39th Digital Avionics
Systems Conference, DASC, 2020.

[21] P. Vivekanandan, G. Garcia, H. Yun, S. Keshmiri, A simplex architecture for
intelligent and safe unmanned aerial vehicles, in: 2016 IEEE 22nd International
Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA, 2016, pp. 69–75, http://dx.doi.org/10.1109/RTCSA.2016.17.
12
[22] A. Desai, S. Ghosh, S.A. Seshia, N. Shankar, A. Tiwari, Soter: A runtime assur-
ance framework for programming safe robotics systems, in: 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN,
2019, pp. 138–150, http://dx.doi.org/10.1109/DSN.2019.00027.

[23] K. Heckemann, M. Gesell, T. Pfister, K. Berns, K. Schneider, M. Trapp, Safe
automotive software, in: Proceedings of the 15th International Conference on
Knowledge-Based and Intelligent Information and Engineering Systems - Volume
Part IV, KES’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 167–176.

[24] R.C. Dorf, R.H. Bishop, Modern Control Systems, Pearson, 2011.
[25] M. Andersen, J. Dahl, Z. Liu, L. Vandenberghe, S. Sra, S. Nowozin, S. Wright,

Interior-point methods for large-scale cone programming, Optim. Mach. Learn.
5583.

[26] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: An open
urban driving simulator, in: Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

[27] M. Bojarski, D.D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, End to end
learning for self-driving cars, 2016, CoRR abs/1604.07316 arXiv:1604.07316.

Qiang Wang received his bachelor and master degree from
the National University of Defense Technology, China in
2010 and 2012, respectively. He obtained his Ph.D. from
EPFL, Switzerland in 2017, where he has been a key person
in the development of the component-based system design
and model checking framework named BIP. Currently, his
research interests focus on the formal safety analysis and
verification techniques for autonomous systems.

Xinlei Zheng received the B.S. degree from Hangzhou
Dianzi University, Hangzhou, China, in 2019. He is currently
pursuing the Master Degree in Hangzhou Dianzi Univer-
sity, Hangzhou, China. His main research interests include
autonomous vehicle control and cooperative control.

Jiyong Zhang received his Ph.D. degree in Computer Sci-
ence from Swiss Federal Institute of Technology at Lausanne
(EPFL) in 2008. He received the B.S. degree and the M.S.
degree in Computer Science from Tsinghua University in
1999 and 2001. He is currently a distinguished professor in
Hangzhou Dianzi University. His research interests include
intelligent information processing, machine learning, data
sciences and recommender systems.

Joseph Sifakis received his bachelor’s degree in electrical
engineering from the Technical University of Athens in 1969
and his Ph.D. in computer science from the University of
Grenoble, France, in 1974. He was elected member of the
French Academy of Engineering and the European Academy
of Sciences in 2008, member of the French Academy of
Sciences in 2010, member of the American Academy of
Humanities and Sciences in 2015, and foreign member
of the American Academy of Engineering in 2017. He is
currently the Director Researcher of the French National
Science Center. His main research areas are model detection
and embedded system design and verification.

http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://www.sciencedirect.com/science/article/pii/S0005109814005160
http://www.sciencedirect.com/science/article/pii/S0005109814005160
http://www.sciencedirect.com/science/article/pii/S0005109814005160
http://dx.doi.org/10.1016/j.sysconle.2013.05.012
http://dx.doi.org/10.1109/TAC.2013.2294618
http://dx.doi.org/10.1109/TAC.2013.2294618
http://dx.doi.org/10.1109/TAC.2013.2294618
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb6
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb6
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb6
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb6
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb6
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb7
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb7
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb7
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb7
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb7
http://arxiv.org/abs/1708.06374
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb9
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb10
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb10
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb10
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb11
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb11
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb11
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb11
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb11
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb12
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb12
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb12
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb12
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb12
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb13
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb13
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb13
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb14
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb14
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb14
http://dx.doi.org/10.1109/TIV.2020.2991953
http://dx.doi.org/10.1109/TIV.2020.2991953
http://dx.doi.org/10.1109/TIV.2020.2991953
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb16
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb16
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb16
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb16
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb16
http://dx.doi.org/10.1109/MED.2018.8442921
http://dx.doi.org/10.1109/MED.2018.8442921
http://dx.doi.org/10.1109/MED.2018.8442921
http://dx.doi.org/10.1109/MS.2001.936213
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb19
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb19
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb19
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb20
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb20
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb20
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb20
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb20
http://dx.doi.org/10.1109/RTCSA.2016.17
http://dx.doi.org/10.1109/DSN.2019.00027
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb23
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb24
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb25
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb25
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb25
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb25
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb25
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb26
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb26
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb26
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb26
http://refhub.elsevier.com/S1383-7621(22)00031-5/sb26
http://arxiv.org/abs/1604.07316

	A hybrid controller for safe and efficient longitudinal collision avoidance control
	Introduction
	A comparative study of the two control approaches
	The MPC controller
	The safe controller
	Evaluation of the two control approaches
	Experimental setting and evaluation criteria
	Evaluation of the two controllers


	Hybrid collision avoidance control
	Design and implementation of the hybrid controller
	Evaluation of the hybrid controller

	Conclusion and discussion
	Declaration of competing interest
	Acknowledgments
	Appendix
	References


