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Abstract 
We discuss the adequacy of system intelligence tests and practical problems raised by their 
implementation. We propose the replacement test as the ability of a system to replace 
successfully another system performing a task in a given context. We show how this test 
can be used to compare aspects of human and machine intelligence that cannot be taken 
into account by the Turing test. We argue that building systems passing the replacement 
test involves a series of technical problems that are outside the scope of current AI. 
We present a framework for implementing the proposed test and validating system 
properties. We discuss the inherent limitations of AI system validation and advocate new 
theoretical foundations for extending existing rigorous test methods. 
We suggest that the replacement test, based on the complementarity of skills between 
human and machine, can lead to a multitude of intelligence concepts reflecting the ability to 
combine data-based and symbolic knowledge to varying degrees. 
 

1. Introduction  
There is currently a confusion about what intelligence is and how it can be achieved. The 
spectacular rise of AI, is accompanied by a frenzy of optimism fueled by the media and 
large technology companies, who through impressive large-scale projects, spread opinions 
suggesting that human-level AI is only a matter of years away. The recent impressive 
achievements of large language models make some believe that machine learning and its 
subsequent developments will enable us to meet the intelligence challenge – this is only a 
matter of time! 
Is it possible to define concepts of intelligence based on rigorous criteria that provide a 
technical basis for judging the extent to which a system exhibits intelligent behavior by 
being able to develop and apply trustworthy knowledge? 
 
We discuss criteria for assessing intelligent behavior of systems. We argue that the Turing 
test fails to capture the many facets of human intelligence. We propose an alternative 
operational definition of intelligence that compares the ability of an agent to successfully 
replace another agent in the execution of a task.  
The proposed replacement test relativizes the concept of intelligence and allows a good 
deal of freedom in its definition. In particular, it allows us to understand human 
intelligence as the result of the combination of a wide range of task skills. This view of 
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intelligence is adopted by autonomous systems intended to replace human agents 
performing tasks in existing organizations, as envisioned by the Internet of Things. Its 
realization requires solving difficult technical problems not related to the system’s ability 
to behave intelligently.  
Building autonomous systems is not a simple machine learning problem. We use the term 
"AI system" for any type of system incorporating artificial neural networks, whether 
machine learning system or autonomous system. 

Finding adequate tests for system intelligence raises a very challenging and topical 
problem: providing evidence that a system meets desired properties. Given the inability to 
apply model-based verification techniques to machine learning systems, empirical 
property validation through testing seems to be the only viable approach. Today, the 
desired properties of AI systems go far beyond the technical properties sought by 
traditional system development methodologies. The vision of responsible AI, or even AI 
aligned with human values, stems from the aspiration to emulate characteristics of human 
behavior. We discuss the possibility of extending current validation techniques to AI 
systems and highlight the limitations of a rigorous validation approach. 
 
A comparison between machines and humans shows important differences and 
complementarity in their ability to develop and apply knowledge. Machines cannot match 
human situational awareness, because human thinking is based on common sense 
knowledge and can combine symbolic mental models with concrete sensory knowledge. In 
addition, humans have a complex and poorly understood value-based decision system that 
allows them to adapt by managing a wide variety of goals across a broad range of activity 
domains. 
On the other hand, machines can learn complex relationships and produce knowledge from 
multidimensional data, while humans show very limited capabilities in this type of task.  
We show that the combination of complementary cognitive abilities of machines and 
humans leads to a vast space of possible intelligences, which calls for further exploration. 
 
The paper is structured as follows. 
 
In Section 2, we define the replacement test and show that it can capture essential aspects 
of human intelligence. We discuss the technical issues involved in building autonomous 
systems and point out that they include challenging engineering problems that are outside 
the scope of current AI. 
In Section 3, we present the principles of a testing framework and discuss the limitations of 
validating properties of AI systems that do not lend themselves to formalization. We 
advocate new theoretical foundations for extending existing rigorous test methods to AI 
systems. 
In Section 4, we argue that the replacement test, based on the complementarity of skills 
between humans and machines, can lead to a multitude of intelligence concepts reflecting 
the ability to combine data-based and symbolic knowledge to varying degrees. 
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2. Deepening the concept of intelligence  

2.1 The replacement test 
 
The Turing test [1], often used to demonstrate that machines are intelligent, cannot 
rigorously account for the many aspects of human intelligence. Humans can move, speak 
and behave socially, abilities that cannot be captured by a conversation game.  
One obvious criticism is that the human experimenter decides on success based on 
subjective criteria. An equally important criticism is that the choice of questions may be 
biased; some may favor human capacity for abstract reasoning and others may require 
analytical skills of computational complexity.  
One of the main strengths of the Turing test over many other definitions [2] is that it 
provides an operational characterization of intelligence that can be implemented in a given 
experimental setting. However, there remain problems related to the practical decision of 
its success. Since failing the test proves nothing and only passing is relevant [3], it is 
important to have practical criteria for deciding how successful the test is. This question of 
sufficient evidence of the validity of a tested property is discussed in Section 2. 
 
In [4], we proposed the replacement test as a generalization of the Turing test to compare 
the ability of two systems to perform a given task, not necessarily verbal. In this test, the 
objective is to check whether a system S1 can successfully replace another system S2 
performing a task characterized by a success criterion P.  
 
To formalize the replacement test, we consider that the systems being compared are 
embedded in the same test context that determines the input variables x and output 
variables y of the systems accessible to the experimenter, with their respective domains 
Dom(x), Dom(y).  
We represent the behavior of a system S under test by an equation of the form y=C[S](x), 
where C is the test context. The success criterion is a predicate P(x,y) that is true when the 
system provides a successful output y to the input x. 
Given a test context C and two systems S1, S2 that can be embedded in the context C, we 
say that S1 can replace S2 in the execution of a task with success criterion P,  
if ∀t∈Dom(x) P(t,C[S2](t)) ⇒ P(t,C[S1](t)), i.e., S1 is at least as successful as S2 in 
completing the task. 
 
We say that S1 and S2 are equivalent if ∀t∈Dom(x) P(t,C[S1](t))=P(t,C[S2](t)). In other 
words, P cannot distinguish between S1 and S2 performing in the context C.  
 
Note that in this comparison, we need to consider not only functional behavior, but also 
time-dependent behavior. Limiting ourselves to purely functional properties may not allow 
us to distinguish a fast system from a slow one that responds with practically unacceptable 
delays. Taking such a criterion into account will favor the machines when the behaviors 
being compared are functionally equivalent. 
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It is clear that this equivalence can account for the Turing test where the systems S1 and S2 
are a human and a machine, respectively. The variables x and y range over questions and 
answers in some natural language. The context C defines the way the agents (human or 
machine) operate in the exchange of messages with the experimenter. Finally, P is the 
predicate that accounts for the criteria applied by the experimenter to compare the 
questions with the corresponding answers.  
 
As the Turing test, the replacement test provides an operational definition of intelligence. It 
can be used to compare the ability of two systems, intelligent or not, to satisfy success 
criteria specified by the property P. It is applicable to compare all kinds of systems 
embedded in the same testing context, whether they are programs, game systems or 
agents. It can give rise to intelligence tests when we consider human intelligence tasks; for 
example, to compare the ability of agents to learn, teach, write a text, etc. by meeting given 
success criteria. An inherent difficulty in this comparison is that the success criteria may 
not lend themselves to a rigorous formulation, as is the case for technical tasks.   
 
We can extend the replacement test to systems consisting of interacting components. For 
example, for driving tasks, we define the system under test y= C[S1,...,Sn](x), that consists 
of n interacting vehicles with x and y n-tuples of input and output variables. 
The test context C is a traffic infrastructure with roads and signaling equipment that define 
the constraints under which vehicles travel. The input xi is a driving scenario for the i-th 
vehicle, i.e. its initial position and speed, and its destination. The output yi of the i-th vehicle 
is the sequence of its successive positions with its kinematic characteristics at each 
position, from its starting point to its destination. Finally, the property P characterizes the 
success criteria for the pairs (x,y), including safety properties, e.g. collision avoidance, but 
also performance properties, e.g. the absence of congestion. Note that P can be formalized 
using logic [5] and thus can be evaluated rigorously for a given experiment. 
 
In the example considered, we can test whether a tuple of autonomous vehicles (S1', ..., Sn') 
can replace a corresponding tuple of human drivers (S1, ..., Sn). Note that applying the 
replacement test to systems of interacting components allows us to compare systems with 
respect to emergent properties that characterize their overall behavior, and thus to 
distinguish individual from collective intelligence, as we will see in the next section. 
 
Note the importance of the context C, especially for systems of interacting components 
sharing a common environment. For example, the latter is specified for autonomous 
driving systems, as an operational design domain [6] which describes the operating 
conditions under which the systems are designed to function, including road types, speed 
range, environmental conditions (weather, time of day/time of night, etc.), traffic 
regulations and applicable regulations. 
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2.2 Autonomous systems  
 
The replacement test allows for broader definitions of intelligence, in particular the ability 
to perform a given set of tasks with associated success criteria. It therefore lends itself well 
to the characterization of human intelligence as a combination of a wide range of abilities. 
The Oxford Learner’s Dictionary defines intelligence as "the ability to learn, understand, 
and think logically about things; the ability to do this well" [7]. This view of intelligence is 
adopted by autonomous systems intended to replace humans performing tasks in existing 
organizations. We explain below that its realization implies a concept of intelligence very 
different from that of the Turing test. 
 
Autonomous systems support a paradigm of AI systems that goes beyond machine learning 
systems, which are often transformational systems that interact with human operators. 
They are distributed, mission-critical systems immersed in a physical and human 
environment. They are composed of agents, each pursuing specific goals but having to 
coordinate to achieve the overall system goals by developing collective intelligence. These 
characteristics make their design extremely difficult, as evidenced by the failure of 
industrial projects promising fully autonomous cars in the near future [8].  
 
The behavior of an autonomous agent can be understood as the combination of five 
functions [4,9]. These consist of two functions for achieving situational awareness 
(perception and reflection) by creating a model of its environment, and two functions (goal 
management and planning) for decision-making based on this model. The fifth function 
concerns the production and application of knowledge to compensate for uncertainty and 
incomplete knowledge of the environment. Typically, the autopilot of an autonomous car 
can use pre-stored knowledge in maps to complement the information produced by its 
perception function. Thus, an autonomous agent combines reactive and proactive behavior. 
It reacts to inputs provided by sensors and produces commands executed by actuators, 
while it creates new situations by using acquired knowledge and pursuing goals. 
 
The two existing approaches to building autonomous agents are not up to the challenge. 
The first one follows the traditional model-based engineering approach, defeated by the 
complexity of the agent and the necessary use of non-explainable AI [10] for perception 
and knowledge management. The second approach, adopted by certain Big Tech 
companies, aims at developing end-to-end machine learning solutions that lack guarantees 
of trustworthiness. 
It should be stressed that building autonomous agents is not the end of the story. The 
successful replacement of a human performing a task in a physical and human environment 
raises non trivial engineering problems.  
It requires the development of adequate interfaces involving sensors and actuators as well 
as man-machine interaction systems. Furthermore, it requires a detailed risk analysis to 
identify possible hazards and set up mechanisms for the mitigation of their effects. For 
example, to integrate an autonomous driving platform into a vehicle's cyber-physical 
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environment, it is necessary to analyze the safety and security risks and to implement the 
appropriate recovery mechanisms.  
The harmonious collaboration between an autonomous agent and a human operator is 
often sought to improve reliability in the accomplishment of a mission. However, this 
common-sense idea does not yield the expected results at first sight and can even be 
dangerous. For example, in the case of an autonomous car with a human supervisor, the 
human agent solicited by the autopilot may not have the time to take control of the vehicle. 
Conversely, in the event of a critical situation, an untimely intervention by the human 
operator overriding the decisions of the autopilot can be dangerous. Safe collaboration 
between autonomous systems and humans raises symbiotic autonomy issues that go far 
beyond traditional HMI [4]. 
 
Finally, it is not enough to build agents capable of achieving their own goals. Their 
collective behavior must satisfy global properties characterizing goals that the autonomous 
system is supposed to achieve. They are properties of distributed systems whose 
realization requires careful design of protocols and their implementation through adequate 
coordination mechanisms. The properties may include simple properties such as 
distributed mutual exclusion and scheduling, as well as more complicated properties such 
as self-organization to achieve dynamically changing goals [11] or self-healing to cope with 
agent failures [12].  
For example, in an autonomous driving system, it is important that the collective behavior, 
through appropriate rules and coordination mechanisms, meets fairness and performance 
criteria, e.g., by preventing "selfish" behavior of agents that could lead to traffic jams or 
inefficient occupation of the road. Correctness of agents with respect to their safe driving 
and mission goals does not guarantee that their integration will not have undesirable 
effects. The extent to which global system properties can be factored into the design 
requirements of individual agents remains an open question. 
 
Figure 1 illustrates some of the points made above by drawing a distinction between 
collective intelligence and agent intelligence. It considers that intelligent behavior is the 
combination of situational awareness and decision-making capabilities. The complexity of 
situational awareness ranges from single domain to multiple domains and finally to open 
world awareness. The complexity of decision-making increases as we move from a single 
goal to multiple goals and from a single agent to a system of agents.  
Currently, AI focuses mainly on single domain and single goal agents. Autonomous agents 
deal with fixed sets of goals in different domains. Finally, human agents exhibit unlimited 
awareness for dynamically changing goal sets. 
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Figure 1: From agent intelligence to collective intelligence  
 
For autonomous systems composed of arbitrary sets of agents, we distinguish three levels 
of difficulty.  
The first level concerns the proper integration of agents so that their interaction does not 
hinder the achievement of their individual goals.  
The second level consists in ensuring that the collective behavior of the integrated agents 
meets the goals that characterize the expected services of the system. For instance, careless 
integration of self-driving agents can cause bottlenecks, unfairness and even compromise 
their safety. 
Finally, the third level corresponds to systems in which agents must act in synergy to 
achieve resilience despite dynamically changing goals and environmental conditions, as in 
human societies. For example, self-healing requires successively 1) the detection of risks by 
agents; 2) the mitigation of risks to allow a minimal availability of the system; and 3) the 
recovery of the system through self-organization. 
 
The above technical analysis of the vision of autonomy inspired by the idea of the 
replacement of man by machine reveals the multiple facets of the intelligence challenge. It 
shows that we need to build a whole edifice of which neural networks are only a building 
block. 
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3. Validating properties of AI systems  
 
The implementation of operational definitions of intelligence, such as the Turing test and 
the replacement test, raises the question of whether a system S satisfies a property P 
specifying a success criterion. In this section, we discuss the principles of validation by 
testing and examine the extent to which existing test methods can provide empirical 
evidence that AI systems satisfy their relevant properties. 

3.1 Property validation by testing  

3.1.1 Testing as an empirical validation process 
 
There is a big difference between verification and testing regarding both the type of 
properties and the degree of confidence that they are satisfied. Test methods are subject to 
observability and controllability constraints. They can experimentally analyze the observed 
behavior of the system in response to external stimuli. On the contrary, verification can 
examine the whole system behavior described by a model, and decide about the validity of 
its properties. In particular, we can verify properties involving universal quantification e.g. 
that all system states are safe, or that any system run involves a rejuvenation state. These 
properties can only be falsified by testing, by discovering system runs that violate them. 
Currently, neural networks cannot be validated by reasoning, including verification 
techniques. Extracting models of their behavior motivates many works on explainable AI 
[10]. This is theoretically possible given the structure of a neural network and the 
mathematical function that characterizes the input/output behavior of its nodes e.g. 
[13,14]. In particular, for feed-forward networks we can propagate the input values along 
each layer to compute the corresponding output values. However, model generation is 
hampered by the nonlinearity of the activation functions and the complexity of the network 
structure. Practical explainability based on rigorous behavioral models seems currently out 
of reach. The validation of neural networks can therefore only be empirical. 
 
We review the principles of empirical validation of system properties through testing, 
which are necessary to decide on operational definitions of intelligence. 
To validate that a system S satisfies a property P(x,y), a test environment includes the 
system under test y=C[S](x) connected to two other systems, as shown in Figure 2: 
 

• A Test Case Generator that applies test cases t∈Dom(x), generated following a test 
method;  

• An Oracle that for each test case t and the corresponding run r, r∈Dom(y), evaluates 
P(t,r) and provides a verdict accordingly. 

 
The claim "S satisfies P" means that for any test case t and corresponding run r, P(t,r)=true. 
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Figure 2: The testing environment 
 
Testing is a general paradigm for developing empirical knowledge.  
The objective of a test method is to estimate the degree of validity of P based on the 
verdicts produced by the oracle for suitably chosen test sets (sets of test cases). The system 
under test can be a physical system, for which we want to test a hypothesis P or an artifact 
for which we want to validate a behavioral property P. We may want to test the capabilities 
of an agent (human or machine) or even the collective properties of a system of agents, 
such as an autonomous driving system, or the opinion of a population. 
 
The oracle can be either a machine-computed algorithm or a human expert able to judge 
according to unambiguous and justifiable criteria. Clearly, P is limited to properties that 
express relationships between observables, inputs and outputs of the system under test. 
 
The test cases are input values selected according to a test method that depends on the 
degree of knowledge of the system under test. We distinguish two extreme cases:  
1) black box testing, when we only have access to the input and the output of the system 
under test;  
2) white box testing, when we have a model, which can be used to explore as much as 
possible, the behavior of the system under test.  
White-box testing combines experimental data with reasoning about a model for a 
thorough exploration of system behavior, resulting in stronger validity guarantees. This 
can be the case when testing electromechanical systems or software systems written in a 
high-level programming language, where the test case generation process can be guided by 
the results of the system model analysis.  
In the current state of knowledge, only black box testing can be applied to neural networks.  
 
The number of the test cases is often extremely large or even infinite. Exhaustive black box 
testing is only possible for systems that are memoryless functions on finite domains, such 
as combinatorial circuits. 
For simple transformational systems, the test cases are patterns of input data e.g. to test 
functional software. For general systems, they are sequences of input data of arbitrary 
length that generate sequences of output data. Often, test methods must tailor test cases to 
system responses, such as for controlled experiments in physics or testing of embedded 
systems. 
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3.1.2 Requirements for a general testing framework  
 
How to select the test cases among all the possible input values? Random testing 
techniques are defeated by the complexity of the task. As explained in [15], if we assume 
that the probability of detecting one failure per test case is constant over time, it is 
practically impossible to guarantee satisfactory reliability levels, e.g., less than 10-8 
failures/hour. To overcome this difficulty, test methods rely on criteria to reduce the 
complexity of the task taking into account the property to be validated and making 
simplifying assumptions to be checked separately.  
 
We propose a general framework for testing the validity of a property P for a system S. This 
framework summarizes the key characteristics of testing techniques and provides 
requirements for rigorous evaluation of test results. 
 
Note that the property P induces an observational equivalence relation on a test set. Two 
test cases t1, t2 are equivalent for P (we write t1 ≈P t2) if for any corresponding runs r1 and 
r2, we have P(t1,r1) = P(t2,r2). We can thus reduce the testing complexity by considering 
only one test case per equivalence class if we assume that P holds [16]. Alternatively, 
following the metamorphic testing approach [17], we can try to falsify P if equivalent test 
cases are distinguished by P. 
 
Other practical criteria for the classification of the test cases can be their significance for 
the satisfaction of the property P. The significance may reflect the likelihood that the 
system environment applies a test case e.g. by distinguishing between frequent test cases 
and infrequent ones. It can also reflect the effectiveness of the test case in exploring 
features that affect property satisfaction.  
These considerations lead to simplifications of the testing problem. When the test cases are 
sequences, simplifications may result from the observation that it is sufficient to test 
property P for test cases of length less than a given value. 
 
The general framework for testing that "S satisfies P” uses two interdependent functions:  
• First, an efficiency function eff that for given T provides eff(T)∈[0,1] measuring the 

extent to which the application of T explores features of the system behavior relevant 
to the property P. This function is used for choosing test sets T. 

• Second, a score function sc that for a given T and the corresponding set of runs R 
computes sc(T,R), a measure of the likelihood that S meets P. Without giving a precise 
definition, sc(T,R) provides quantitative information about the degree of validity of P. 

 
For example, in test methods for hardware or software systems, the efficiency function 
characterizes a degree of coverage of the system behavior, based on two types of criteria:  
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1) structural criteria that provide the percentage of the system structure exercised by the 
test cases, such as the percentage of source code lines or the percentage of branches of a 
control graph, e.g. [18];  
2) functional criteria that indicate that the system can perform certain essential functions, 
such as transmitting messages, braking, or adapting to stimuli, e.g. [19].  
In these cases, the score function usually provides the average success rate with 
corresponding coverage, or with confidence level and range for statistical testing methods 
[20,21]. Note that based on the calculated score, the oracle can guide the test case 
generator to adapt by selecting test cases that improve the efficiency of the testing process 
[22]. 
 
Additionally, the two functions eff and sc should satisfy the following minimal 
requirements.  

• Monotonicity of eff: For test sets T1, T2, T1⊆T2 implies eff(T1)≤ eff(T2). In other 
words, the test method is progressive; adding new test cases to a given test set does 
not degrade its efficiency.  

• Consistency of eff with respect to P: If two test cases t1, t2 are not distinguishable by 
P then they are equally efficient i.e., t1 ≈P t2 implies eff({t1})=eff({t2}). 

• Reproducibility: Equally efficient test sets T1, T2 should yield “similar” scores within 
a degree estimated by the theory, i.e., eff(T1)=eff(T2) implies sc(T1,R1) ~ sc(T2,R2), 
where R1 and R2 are the sets of runs corresponding to T1, T2. The relation ~ is a 
similarity relation on the set of scores with a degree parameter that allows to 
compare the proximity of two scores. 
Reproducibility is an essential epistemic requirement that guarantees the 
“objectivity” of the testing method, e.g. that the outcome of the testing process does 
not depend on the choice of a particular test set, but only on its efficiency [23]. 
 

Additional requirements can ensure a smooth constructive testing process.   
• One requirement is to allow building increasingly efficient test sets taking into 

account only the efficiency of their elements, i.e., for T1, T2, T3, T4 test sets, 
eff(T1)=eff(T2) and eff(T3)=eff(T4) implies eff(T1 ∪T3)=eff(T2 ∪T4).   

• Another equally important requirement is that for any sequence of test sets of 
increasing efficiency the corresponding scores are increasingly accurate. 

 
The proposed framework provides the necessary conditions for the development of 
reliable empirical knowledge through testing. It takes up some of the ideas in [24] about 
testing and the observational equivalence ≈P. It is part of an empirical approach to 
Computing [25,26] of increasing importance with the predominant role of artificial 
intelligence techniques. 
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3.2 Validating properties of AI systems 

3.2.1 Limitations of AI systems  
 

To what extent can we apply rigorous test methods to validate relevant properties of AI 
systems? 
 
Engineering practices follow epistemic imperatives requiring that when a property is 
assigned to a system, it must be accompanied by its rigorous definition and usable 
validation criteria allowing its falsification. Attributing a property to a system without 
validation criteria is just technically irrelevant chatter. System requirements can be broken 
down into sets of three different types of properties.  
Safety properties mean that the system, during system execution, will never reach "bad 
states" characterized by explicit conditions on its variables.  
Security properties mean that the system is resilient to attacks that threaten data integrity, 
privacy and system availability.  
Finally, performance properties characterize technical and economic criteria concerning the 
resources and their exploitation.  
Safety and security properties can only be falsified by testing. Their non-falsification is only 
an indication of a certain degree of validity depending on technical score criteria.  
 
The application of rigorous test methods to AI systems suffers from limitations that are 
often overlooked due to the tendency to break free from the shackles of standard 
engineering practices. 
Note that the existence of adversarial examples for neural networks [27] contradicts 
requirements of the testing framework. An adversarial example is a corrupted version of 
input data that is misclassified by the system while it cannot be distinguished by the oracle. 
This means that we have two test cases t1, t2 such that t1 ≈P t2 and thus eff({t1})=eff({t2}) 
while the scores of the corresponding tests are different. However, the requirement 
violated by this anomaly can be relaxed if we can find adequate statistical criteria 
characterizing the root causes of the adversarial examples and the factors amplifying the 
phenomenon. 
 
Other limitations concern the type of properties tested, in particular "human-centric" 
properties that cannot be defined in terms of observables of the system under test.   
Many works superficially attribute mental attitudes such as belief, desire and intention to 
autonomous systems [28,29,30]. Some even consider that in an autonomous system, “we 
cannot show that an agent always does the right thing, but only that its actions are taken 
for the right reasons” [28].  
Judging machine behavior according to ethical criteria means that machines can 
understand and predict/estimate the consequences of their choices. It practically implies 
that they can build a semantic model of the external world on which they can evaluate the 
impact of their choices [9]. Moreover, the Chinese room argument [31] shows that the 
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ability to understand cannot be discerned experimentally. Finally, further evidence that all 
of these considerations are technically irrelevant is that when it comes to implementing 
mental attitudes in software systems, belief, desire, and intention simply become 
knowledge, the set of possible goals, and the generated plan to achieve a given goal, 
respectively [28]. Moving from correctness with respect to objective criteria to the respect 
of ethical rules opens the door to a bogus and irrational debate about how to evaluate the 
impact and role of AI.  
 
Here are some examples that illustrate the tendency to assert desired properties without 
taking the necessary precautions to ensure that assertions are well-founded from a logical 
or epistemological point of view.  
 
Claiming that an autonomous driving system is safe enough because it has driven 10 billion 
miles in simulation does not necessarily imply that the real system is safe [32]. The 
simulated miles must be related to the "real” miles to show that the simulation takes into 
account the many different situations according to their significance, e.g., different road 
types, traffic conditions, weather conditions, etc. 
 
The concept of "responsible AI," embraced in particular by big tech companies [33,34], 
requires that the development and use of AI meet criteria such as fairness, transparency, 
and accountability, which are difficult, if not impossible, to specify and test. 
 
Finally, “AI alignment" with human values e.g. [35], is completely unfounded, as we do not 
even understand how the human volition emerges and how the associated value-based 
decision-making system works. At some point, it will be necessary to demonstrate that the 
advocated multi-objective optimization approaches can capture human decision 
mechanisms involving a large number of dynamically changing and hierarchically 
structured goals, subject to different temporal constraints and dependent on complex 
intertwined value systems that are currently poorly understood [9]. 
Figure 3 shows, for six types of systems and corresponding properties, differences in the 
applicability of test methods. 
 
The first two cases correspond to white-box testing, where mathematical models 
complement empirical knowledge about the tested systems, allowing to reason about and 
explore in depth their behavior. The oracle in both cases applies methods based on 
objective criteria, and non-falsification is conclusive evidence of their validity.  
 
The third case is an application of the statistical approach to estimate the effectiveness of a 
vaccine. Applied statistics propose sampling techniques that rely on an observational 
equivalence relation on the possible experiments. A sample includes a proportion of 
representatives per class reflecting their significance in the test space. For the system 
under consideration, namely a population, it is practically impossible to obtain detailed 
behavioral models. However, sampling techniques allow us to achieve an adequate 
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coverage of the population concerned. The oracle is a human analyst who applies a 
predefined method based on experimental data to decide the outcome of a test campaign. 
  

 
 
Figure 3: Examples illustrating differences in the applicability of test methods. 
 
The following three cases concern AI systems whose characteristics direct us towards 
statistical methods to be developed. 
For an image classifier with unambiguous classification criteria, even if the property P 
cannot be formalized, we can amply rely on a human oracle. We need a sampling technique 
based on appropriate coverage criteria to estimate the probability that the system will 
perform as expected. Of course, these criteria must take into account possible adversarial 
anomalies. 
For autonomous driving systems, it is possible to formalize the properties and associated 
validation techniques applied by the oracle. For example, for a traffic rule, it is possible to 
check formally whether the observed behavior violates this property [5]. Nevertheless, we 
lack sampling techniques to generate sets of driving scenarios that provide adequate 
coverage of real-life situations and to estimate test campaign scores. 
 
Finally, for large language models performing natural language processing, rigorous testing 
seems almost impossible.  
First, because there is no characterization of the precise nature of the relationship between 
prompts and responses. Thus, the property to be validated cannot be specified 
unambiguously unless the language is restricted to subsets rooted in rigorous semantics. 
Second, in order to develop statistics-based techniques, we need coverage and significance 
criteria, which seems difficult, if not impossible, for natural languages. 
These issues are often ignored by work that considers success on various benchmarks 
designed to model meaning-sensitive tasks to be sufficient evidence that language models 
understand natural language [36]. In addition to the fact that the training data for language 
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models do not account for meaning, it is impossible to demonstrate that the benchmarks 
are not free of bias. 
 

3.2.2 Testing operational definitions of intelligence 
 
We discuss the effective application of the testing framework for comparing two systems 
S1 and S2 integrated in the same context C and performing a task characterized by a 
success criterion P(x, y). 

For which type of task, and therefore for which associated criterion P, is it possible to 
develop test methods that estimate the probability that the two systems are equivalent, i.e. 
∀t∈Dom(x) P(t,C[S1](t))=P(t,C[S2](t))? 

We have already mentioned the inherent limitations of conversational natural language 
tasks, for which the property P cannot be rigorously formulated. This limitation is lifted for 
tasks performed by systems whose I/O behavior involves quantities, such as physical 
system controllers. In this respect, the Turing test differs from replacement tests for tasks 
of this type where, in principle, P can be formalized. 

Another peculiarity of the Turing test is that the property P admits a finite, albeit very 
complex, representation. Since the test domain is discrete and the length of the test cases 
and corresponding answers is finite, the property P can be stored in a finite memory in the 
form of a correspondence between questions and answers (exactly as in the Chinese room 
argument [31]).  
The consequence of this observation is that such a theoretical possibility defeats the 
purpose of the Turing test. If human intelligence can be apprehended by a conversational 
game in natural language, then machines endowed with the finite relation characterizing 
the success criterion P can become at least as intelligent as humans, with the obvious 
advantage of much shorter response times.  
This remark also applies to any test based on a natural language conversation, where the 
success criterion is a finite set of questions/answers. Consider, for example, the highly 
relevant "Human or Machine" test designed to distinguish humans from machines, 
proposed and studied in [37]. If the distinguishing criteria are test cases where humans and 
machines react differently, it is always possible to make machines indistinguishable by 
modifying their behavior so that they also mimic humans for these test cases. 

This discussion suggests that if human intelligence can be captured by a finite set of tests, 
then machines can imitate humans. However, the above thought experiment is not 
transposable to replacement tests for tasks with infinite domains e.g., where the inputs and 
outputs are physical quantities. Even if the length of the experiments is finite, there are 
infinitely many possible test cases. To compare these systems, it is necessary to develop the 
theoretical foundations of statistical test methods, as explained in 3.1.2. 
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4. Multiple Intelligences  
 
The impressive success of AI today leads to a wave of optimism that masks the fact that it 
focuses on single-domain, single-task systems, which falls far short of covering the multiple 
aspects of human intelligence.  
 
Without a clear idea of what intelligence is, we cannot develop a theory of how it works. To 
say that “S1 is smarter than S2” is meaningless without specifying the task(s) and the 
criteria for success.  
 
On the one hand, the proposed replacement test is consistent with the position that there 
are multiple intelligences, each characterized by the ability to perform tasks purposefully 
in a given context. Tasks can be of any type, and the environment in which the agents 
operate need not be real. For example, we can compare the ability of a human playing a 
game in a virtual reality environment to that of a machine. The machine would easily beat 
the human in a game requiring good memory and computational intelligence. 
 
On the other hand, in the debate about how to achieve artificial general intelligence, we 
should take human intelligence as a reference by considering replacement tests for a 
characteristic set of tasks requiring human skills.  
As these tasks may involve interaction with the physical or human environment, 
intelligence is not limited to solving abstract computational problems, but also involves 
solving associated implementation problems. Human intelligence is not "general purpose"; 
it is the result of historical evolution in a given physical environment. Human intelligence 
would be shaped differently if man had lived in a different environment, for example on 
another planet. 
 
The replacement test applied to a group of collaborating agents characterizes their ability 
to achieve goals that none of them can achieve by working separately. It therefore takes 
into account the fact that agents are immersed in a physical world of which they can only 
have a limited perception and field of action. This leads to a concept of collective 
intelligence measuring the ability of a group of agents to overcome their individual 
limitations, for example to build a complex artifact. This concept could become irrelevant 
for super-intelligent and hyper-powerful machines that surpass the human condition.  
 
Autonomous systems born out of the need to replace human agents with machines adopt 
the replacement test and appear to be a bold step toward artificial general intelligence. 
They provide to some extent, a methodological basis for comparing humans and machines 
in terms of their ability to perform skilled tasks.  
Humans can combine concrete sensory information with common-sense knowledge [38]. 
This is a vast semantic model built throughout life by learning and reasoning; it involves 
concepts, cognitive rules and patterns, used to interpret sensory information and language. 
Human understanding combines bottom-up reasoning from the sensor level to mental 
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models, and top-down reasoning from semantic models to perception. This is a major 
difference between humans and neural networks. Humans have no difficulty recognizing a 
partially snow-covered stop sign because they can associate sensory information with its 
conceptual model and properties. In contrast, a neural network must be trained to 
recognize stop signs in all weather conditions [9].  
In order for machines to match human situational awareness, they must be able to 
gradually develop knowledge about their environment through a combination of learning 
and reasoning. This is probably the most difficult problem to solve, as evidenced by the 
poor progress made so far in the semantic analysis of natural languages. 
 
Humans, as autonomous systems, are endowed with a specific value-based decision-
making mechanism [39] that can handle a multiplicity of goals to satisfy their 
corresponding needs. They choose between action alternatives based on a system of value 
scales to determine, for each action, the units of value needed or generated to perform it. 
The decision mechanism estimates for actions a subjective "value balance" depending on 
their domains: economic, political, legal, educational, military, epistemic, moral, religious, 
aesthetic, etc. [9]. For example, a falsified tax declaration may bring an economic benefit 
but in return may lead to a penalty (cost in the legal value scale). Note that in order to 
establish the value balance for an action affecting different domains, humans implicitly 
accept a certain correspondence between the value scales based in particular on their 
common-sense knowledge. 
 
The value systems of individuals reflect a value system common to the social organization 
to which they belong, and which aims to promote the achievement of common goals, 
rewarding beneficial actions and penalizing actions detrimental to the social good. This 
ensures social cohesion and the synergy of individuals to achieve common goals. Value-
based decision-making mechanisms allow us to understand how society and its individuals 
behave as dynamic systems, and how social intelligence emerges.  
Societies are autonomous systems capable of managing multiple goals and adapting to 
changes in their environment. Human intelligence has a social dimension because it is 
capable of creating synergies and contributing to social goals, but also because it has been 
shaped during evolution, immersed in social life.  
It will take time to develop autonomous systems capable of intelligent collective behavior. 
 
For operational definitions of intelligence to be useful, we need well-founded approaches to 
validate system properties [40]. This question raises epistemological and methodological 
issues that deserve further exploration. The lack of explicit and faithful behavioral models 
for neural networks prevents formal verification, which limits both the type of properties 
considered and the levels of certainty and validity achievable. Only properties that express 
relationships on observables can be tested, which excludes properties related to mental 
attitudes that are outside the scope of a black box test analysis. 
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Another induced limitation is that validation cannot provide guarantees as strong as those 
obtained by model-based validation. Statistical validation with adequate theoretical 
foundations seems to be the only realistic approach. 
 
The fact that natural language transformers fall outside the scope of rigorous validation 
techniques raises legitimate questions about the possibility of establishing empirical 
evidence of their properties by adequately relaxing existing epistemic requirements. In this 
respect, it seems appropriate to find a compromise between system certification and 
human qualification. The former relies on a formal methodology to test established 
evaluation criteria, while the latter attests, by means of an examination, to a person's skills 
and abilities. 
What if we replaced rigorous testing with qualification examinations? After all, it is not 
impossible for large language models to pass final exams just as well as students.  
However, we should not ignore two fundamental differences between neural networks and 
human beings. Firstly, human thinking is robust, whereas neural networks are not (slight 
changes in questions imply different answers); secondly, human thinking is better placed 
to avoid inconsistencies, thanks to semantic control based on common-sense knowledge. 
 

 
Figure 4: The space of possible intelligences 
 
Operational definitions of intelligence allow us to compare behaviors, but ignore the way 
they are implemented. Two behaviorally equivalent systems may use very different 
creative processes. 
Humans have good situational awareness, combine symbolic and concrete knowledge, and 
make highly effective value-based decisions. Nevertheless, their cognitive abilities are 
limited to grasp complex relationships and make optimal decisions [41]. On the other hand, 
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data-based techniques are proving to be unbeatable in generating knowledge from high-
dimensional data. Inspired by this complementarity, we can imagine a space of possible 
intelligences encompassing the abilities to generate and apply data-based knowledge and 
symbolic knowledge, as shown in Figure 4. A super-intelligent agent could combine both to 
the highest degree (upper right corner). 
 
Can we bridge the gap between symbolic and concrete knowledge by using neural 
networks exclusively? We are very far from being able to answer this question, which 
requires an in-depth study of the human mechanisms of management and development of 
symbolic knowledge.  
In some cases, reasoning can be replaced by a complex model-based evaluation. Recent 
results show that large language models can open the way to efficient solutions to symbolic 
reasoning problems [42]. 
However, it is doubtful that all the unexplored human capabilities in symbolic knowledge 
processing can be emulated by data-driven techniques. There is still a long way to go before 
machines can match the multifaceted human capabilities in power of abstraction and 
creativity. 
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